Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏秀
dc.contributor.authorFan-Chi Yehen
dc.contributor.author葉凡綺zh_TW
dc.date.accessioned2021-06-16T23:28:54Z-
dc.date.available2014-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-07-30
dc.identifier.citationBarker, P. A. (2009). Whither proBDNF? Nat Neurosci, 12(2), 105-106. doi: 10.1038/nn0209-105
Barnes, P., & Thomas, K. L. (2008). Proteolysis of proBDNF Is a Key Regulator in the Formation of Memory. PLoS One, 3(9), e3248. doi: 10.1371/journal.pone.0003248
Barnett, J. H., & Smoller, J. W. (2009). The genetics of bipolar disorder. [Review]. Neuroscience, 164(1), 331-343. doi: 10.1016/j.neuroscience.2009.03.080
Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289-300. doi: citeulike-article-id:1042553
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. [Review]. Growth Factors, 22(3), 123-131.
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123-131.
Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol, 11(8), 1169-1180. doi: 10.1017/s1461145708009309
Carvalho, A. L., Caldeira, M. V., Santos, S. D., & Duarte, C. B. (2008). Role of the brain-derived neurotrophic factor at glutamatergic synapses. [Research Support, Non-U.S. Gov't Review]. Br J Pharmacol, 153 Suppl 1, S310-324. doi: 10.1038/sj.bjp.0707509
Craddock, N., & Sklar, P. (2009). Genetics of bipolar disorder: successful start to a long journey. [Review]. Trends Genet, 25(2), 99-105. doi: 10.1016/j.tig.2008.12.002
Drevets, W., Price, J., & Furey, M. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. (1), 93-118. doi: 10.1007/s00429-008-0189-x
Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Biol Psychiatry, 59(12), 1116-1127. doi: 10.1016/j.biopsych.2006.02.013
Dunham, J. S., Deakin, J. F., Miyajima, F., Payton, A., & Toro, C. T. (2009). Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res, 43(14), 1175-1184. doi: 10.1016/j.jpsychires.2009.03.008
Efron, B., & Tibshirani, R. (2007). On testing the significance of sets of genes. Annals of Applied Statistics, 1(1), 107-129. doi: 10.1214/07-aoas101
Griffith, M. B. (2011). Alternate Reality Conceptualization: Venturing Along the Fine Line Between Genius and Madness. Issues in Mental Health Nursing, 32(10), 624-631. doi: 10.3109/01612840.2011.584361 Group, T. G. C. R. (2007). New models of collaboration in genome-wide association studies: the Genetic Association Information Network. [10.1038/ng2127]. Nat Genet, 39(9), 1045-1051. doi: http://www.nature.com/ng/journal/v39/n9/suppinfo/ng2127_S1.html
Hasbi, A., Fan, T., Alijaniaram, M., Nguyen, T., Perreault, M. L., O'Dowd, B. F., & George, S. R. (2009). Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. [Research Support, N.I.H., Extramural]. Proc Natl Acad Sci U S A, 106(50), 21377-21382. doi: 10.1073/pnas.0903676106
Hashimoto, K. (2010). Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci, 64(4), 341-357. doi: 10.1111/j.1440-1819.2010.02113.x
Jia, P., Kao, C.-F., Kuo, P.-H., & Zhao, Z. (2011). A comprehensive network and pathway analysis of candidate genes in major depressive disorder. BMC Systems Biology, 5(Suppl 3), S12. doi: 10.1186/1752-0509-5-s3-s12
Kanazawa, T., Glatt, S. J., Kia-Keating, B., Yoneda, H., & Tsuang, M. T. (2007). Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet, 17(3), 165-170. doi: 10.1097/YPG.0b013e32801da2e2
Kao, C. F., Fang, Y. S., Zhao, Z., & Kuo, P. H. (2011). Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. [Research Support, Non-U.S. Gov't]. PLoS One, 6(4), e18696. doi: 10.1371/journal.pone.0018696
Keller, M. C., & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci, 29(4), 385-404; discussion 405-352. doi: 10.1017/s0140525x06009095
Koshimizu, H., Hazama, S., Hara, T., Ogura, A., & Kojima, M. (2010). Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. [Research Support, Non-U.S. Gov't]. Neurosci Lett, 473(3), 229-232. doi: 10.1016/j.neulet.2010.02.055
Krishnan, V., & Nestler, E. J. (2008). The molecular neurobiology of depression. [Research Support, N.I.H., Extramural Review]. Nature, 455(7215), 894-902. doi: 10.1038/nature07455
Kunugi, H., Hori, H., Adachi, N., & Numakawa, T. (2010). Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin Neurosci, 64(5), 447-459. doi: 10.1111/j.1440-1819.2010.02135.x
Lanave, C., Colangelo, A. M., Saccone, C., & Alberghina, L. (2007). Molecular evolution of the neurotrophin family members and their Trk receptors. Gene, 394(1–2), 1-12. doi: 10.1016/j.gene.2007.01.021
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., . . . Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. [Research Support, Non-U.S. Gov't]. Bioinformatics, 23(21), 2947-2948. doi: 10.1093/bioinformatics/btm404
Levinson, D. F. (2006). The genetics of depression: a review. [Research Support, N.I.H., Extramural Review]. Biol Psychiatry, 60(2), 84-92. doi: 10.1016/j.biopsych.2005.08.024
Lin, P. Y. (2009). State-dependent decrease in levels of brain-derived neurotrophic factor in bipolar disorder: a meta-analytic study. [Meta-Analysis Research Support, Non-U.S. Gov't]. Neurosci Lett, 466(3), 139-143. doi: 10.1016/j.neulet.2009.09.044
Liu, L., Foroud, T., Xuei, X., Berrettini, W., Byerley, W., Coryell, W., . . . Nurnberger, J. I., Jr. (2008). Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Psychiatr Genet, 18(6), 267-274. doi: 10.1097/YPG.0b013e3283060f59
Liu, X., Xu, Y., Jiang, S., Cui, D., Qian, Y., & Jiang, K. (2009). Family-based association study between brain-derived neurotrophic factor gene and major depressive disorder of Chinese descent. [Research Support, Non-U.S. Gov't]. Psychiatry Res, 169(2), 169-172. doi: 10.1016/j.psychres.2008.06.014
Lu, B. (2003). Pro-Region of Neurotrophins: Role in Synaptic Modulation. Neuron, 39(5), 735-738. doi: 10.1016/s0896-6273(03)00538-5
Mandel, A. L., Ozdener, H., & Utermohlen, V. (2009). Identification of pro- and mature brain-derived neurotrophic factor in human saliva. [Comparative Study Research Support, N.I.H., Extramural]. Arch Oral Biol, 54(7), 689-695. doi: 10.1016/j.archoralbio.2009.04.005
Manji, H. K., Drevets, W. C., & Charney, D. S. (2001). <Manji_2001_The cellular neurobiology of depression.pdf>. [Review]. Nature medicine, 7.
Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. [Research Support, N.I.H., Intramural Review]. Nat Neurosci, 10(9), 1089-1093. doi: 10.1038/nn1971
Menashe, I., Maeder, D., Garcia-Closas, M., Figueroa, J. D., Bhattacharjee, S., Rotunno, M., . . . Chatterjee, N. (2010). Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. Cancer Res, 70(11), 4453-4459. doi: 10.1158/0008-5472.CAN-09-4502
Molendijk, M. L., Bus, B. A., Spinhoven, P., Penninx, B. W., Kenis, G., Prickaerts, J., . . . Elzinga, B. M. (2011). Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. [Comparative Study Research Support, Non-U.S. Gov't]. Mol Psychiatry, 16(11), 1088-1095. doi: 10.1038/mp.2010.98
Numakawa, T., Suzuki, S., Kumamaru, E., Adachi, N., Richards, M., & Kunugi, H. (2010). BDNF function and intracellular signaling in neurons. [Research Support, Non-U.S. Gov't Review]. Histol Histopathol, 25(2), 237-258.
Patel, S. D., Le-Niculescu, H., Koller, D. L., Green, S. D., Lahiri, D. K., McMahon, F. J., . . . Niculescu, A. B., 3rd. (2010). Coming to grips with complex disorders: genetic risk prediction in bipolar disorder using panels of genes identified through convergent functional genomics. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Am J Med Genet B Neuropsychiatr Genet, 153B(4), 850-877. doi: 10.1002/ajmg.b.31087
PGC. (2012). A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. doi: 10.1038/mp.2012.21
Post, R. M. (2007). Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. [Research Support, Non-U.S. Gov't Review]. J Psychiatr Res, 41(12), 979-990. doi: 10.1016/j.jpsychires.2006.09.009
Proux, E., Studer, R. A., Moretti, S., & Robinson-Rechavi, M. (2009). Selectome: a database of positive selection. Nucleic Acids Res, 37(suppl_1), D404-407.
Ribeiro, L., Busnello, J. V., Cantor, R. M., Whelan, F., Whittaker, P., Deloukas, P., . . . Licinio, J. (2007). The brain-derived neurotrophic factor rs6265 (Val66Met) polymorphism and depression in Mexican-Americans. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neuroreport, 18(12), 1291-1293. doi: 10.1097/WNR.0b013e328273bcb0
Roshanaei-Moghaddam, B., & Katon, W. (2009). Premature mortality from general medical illnesses among persons with bipolar disorder: a review. Psychiatr Serv, 60(2), 147-156. doi: 10.1176/appi.ps.60.2.147
Saccone, C., & Pesole, G. (2005). Molecular Evolution Handbook of Comparative Genomics: John Wiley & Sons, Inc.
Sanacora, G., Treccani, G., & Popoli, M. (2012). Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 62(1), 63-77. doi: 10.1016/j.neuropharm.2011.07.036
Savas, S., Geraci, J., Jurisica, I., & Liu, G. (2009). A comprehensive catalogue of functional genetic variations in the EGFR pathway: protein-protein interaction analysis reveals novel genes and polymorphisms important for cancer research. [Research Support, Non-U.S. Gov't]. Int J Cancer, 125(6), 1257-1265. doi: 10.1002/ijc.24535
Seifuddin, F., Mahon, P. B., Judy, J., Pirooznia, M., Jancic, D., Taylor, J., . . . Zandi, P. P. (2012). Meta-analysis of genetic association studies on bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. doi: 10.1002/ajmg.b.32057
Sen, S., Duman, R., & Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Biol Psychiatry, 64(6), 527-532. doi: 10.1016/j.biopsych.2008.05.005
Shyn, S. I., & Hamilton, S. P. (2010). The genetics of major depression: moving beyond the monoamine hypothesis. Psychiatr Clin North Am, 33(1), 125-140. doi: 10.1016/j.psc.2009.10.004
Shyn, S. I., Shi, J., Kraft, J. B., Potash, J. B., Knowles, J. A., Weissman, M. M., . . . Hamilton, S. P. (2011). Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Mol Psychiatry, 16(2), 202-215. doi: 10.1038/mp.2009.125
Sullivan, P. F., de Geus, E. J., Willemsen, G., James, M. R., Smit, J. H., Zandbelt, T., . . . Penninx, B. W. (2009). Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Mol Psychiatry, 14(4), 359-375. doi: 10.1038/mp.2008.125
Sun, J., Wan, C., Jia, P., Fanous, A. H., Kendler, K. S., Riley, B. P., & Zhao, Z. (2011). Application of systems biology approach identifies and validates GRB2 as a risk gene for schizophrenia in the Irish Case Control Study of Schizophrenia (ICCSS) sample. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Validation Studies]. Schizophr Res, 125(2-3), 201-208. doi: 10.1016/j.schres.2010.12.002
Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. [Research Support, Non-U.S. Gov't]. Nucleic Acids Res, 34(Web Server issue), W609-612. doi: 10.1093/nar/gkl315
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. [Research Support, N.I.H., Extramural]. Mol Biol Evol, 28(10), 2731-2739. doi: 10.1093/molbev/msr121
Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., . . . Hempstead, B. L. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. J Neurosci, 25(22), 5455-5463. doi: 10.1523/JNEUROSCI.5123-04.2005
Tettamanti, G., Cattaneo, A. G., Gornati, R., de Eguileor, M., Bernardini, G., & Binelli, G. (2010). Phylogenesis of brain-derived neurotrophic factor (BDNF) in vertebrates. [Research Support, Non-U.S. Gov't]. Gene, 450(1-2), 85-93. doi: 10.1016/j.gene.2009.07.023
Tognoli, C., Rossi, F., Di Cola, F., Baj, G., Tongiorgi, E., Terova, G., . . . Gornati, R. (2010). Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax. [Research Support, Non-U.S. Gov't]. BMC Neurosci, 11, 4. doi: 10.1186/1471-2202-11-4
Tsai, S.-J. (2007). The P11, tPA/plasminogen system and brain-derived neurotrophic factor: Implications for the pathogenesis of major depression and the therapeutic mechanism of antidepressants. Medical Hypotheses, 68(1), 180-183. doi: 10.1016/j.mehy.2006.06.005
Verhagen, M., van der Meij, A., van Deurzen, P. A., Janzing, J. G., Arias-Vasquez, A., Buitelaar, J. K., & Franke, B. (2010). Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. [Meta-Analysis]. Mol Psychiatry, 15(3), 260-271. doi: 10.1038/mp.2008.109
Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006a). A Map of Recent Positive Selection in the Human Genome. PLoS Biology, 4(3), e72. doi: 10.1371/journal.pbio.0040072
Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006b). A Map of Recent Positive Selection in the Human Genome. PLoS Biol, 4(3), e72. doi: 10.1371/journal.pbio.0040072
Wang, K., Li, M., & Bucan, M. (2007). Pathway-based approaches for analysis of genomewide association studies. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Am J Hum Genet, 81(6), 1278-1283. doi: 10.1086/522374
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65185-
dc.description.abstract背景:在眾多解釋情感性疾患的病理機制中,神經滋養因子假說(neurotrophic hypothesis)是近年來相當被重視的一個論點,其中最常被大家所研究的是腦衍生神經滋養因子(brain-derived neurotrophic factor, BDNF),它在生物學中所扮演的角色通常被認為和神經元的存活和分化有關。然而,截至目前為止,有關腦衍生神經滋養因子在情感性疾患中的特徵以及背後的機制都還不是那麼明確,而先前許多研究顯示了腦衍生神經滋養因子與情感性疾患之間的關係,在不同的研究設計下是不一致的。
目的:這個研究希望可以利用系統生物學的方法,包含了分子演化、基因體研究、蛋白質的功能及生物路徑的分析,來探索腦衍生神經滋養因子在情感性疾患中所扮演的角色。
方法:在分子演化的部分,我們利用了一些現有的套件軟體來幫我們檢視十二個物種之間序列的相似性、多重序列比對、演化樹的建立以及是否有經歷正向天擇 (positive selection)。基因體的研究以及了解蛋白質的功能與角色則是利用文獻回顧的方式,整理過往在這兩方面的發展跟研究進行統整。最後在生物路徑分析的部分,我們利用一些較知名且整合型的資料庫,選擇與腦衍生神經滋養因子有交互作用的蛋白及其對應的生物路徑,利用現有的全基因體相關性基因型(GWAS)的資料來進行與情緒障礙間相關性的路徑分析。
結果:在各個物種間序列比對的結果顯示,腦衍生神經滋養因子是一個高度保守的基因,在脊索動物和人類的序列上有百分之七十五的相似度,而在脊椎動物上相似度更可高達百分之八十五點九甚至是百分之百。在分子演化方面的分析則是發現在這十二個物種之間沒有經歷過正向天擇。文獻回顧和統合分析顯示了不管是在什麼樣的基因體研究設計上,像是連鎖分析研究、相關性研究、基因表現或是全基因體相關性研究中,腦衍生神經滋養因子在情感性疾患上的關係都得到不一致的結果。成熟的腦衍生神經滋養因子是從該因子的前驅物產生而來的,而這兩種蛋白扮演了相反的生物功能。研究顯示,腦衍生神經滋養因子的前驅物會對壓力刺激有所反應,而且跟認知功能有所相關,意味著腦衍生神經滋養因子以及其前驅物在情感性疾患上都是有必要進一步研究的。在生物路徑分析方面,我們指認出了和腦衍生神經滋養因子有交互作用的蛋白,並且將轉譯出這些蛋白的基因對到情感性疾患的全基因體相關性資料中。在這個分析中,我們指出了一些可能參與了情感性疾患機制的生物路徑。
結論:由於生物機制的複雜性以及單一研究設計的限制性,利用系統性的方式來檢視腦衍生神經滋養因子所扮演的特徵可以提供更多的機會,了解其在情感性疾患中背後所參與的病理機制。
zh_TW
dc.description.abstractBackground: The neurotrophic hypothesis for mood disorders has been proposed over a decade. Brain-derived neurotrophic factor (BDNF) is one of the most studied, which plays an important role in neuronal survival and differentiation. However, the features and underlying mechanisms of BDNF for mood disorders is yet clear. Previous studies using different designs often reported inconsistent results for the relationship between BDNF and mood disorders.
Objects: This study aims to explore the features of BDNF for its role in mood disorders by using the viewpoint of systems biology, including aspects in molecular evolution, genomic studies, protein functions, and pathway analysis.
Methods: In molecular evolution, we used existed software to conduct sequence examination, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. Literature review was used to summarize results from previous genomic studies of BDNF and functions of pro-BDNF and mature-BDNF. We choose proteins that interact with BDNF and pathways from well-known integrated databases. The genome-wide association data for mood disorders were used to conduct pathway analysis.
Results: Results of sequence alignment among different species revealed that BDNF is a highly conserved gene, having 75% identity in chordates with human and 85.9%-100% in vertebrates. Molecular evolutionary analysis found no signs of recent positive selection. Literature review and meta-analysis found inconsistent relationship between BDNF and mood disorders in different designs, such as linkage, association, gene expression, or GWA studies. Mature BDNF was produced from pro-BDNF and the two proteins have opposite biological functions. Studies suggested that pro-BDNF may response to stress and correlate with cognition, implicating the necessity to study both pro- and m-BDNF for mood disorders. We identified proteins that interact with BDNF (I-Genes) and mapped these genes to genome-wide association datasets of mood disorders. Pathway analyses identified possible biological pathways that involved with BDNF or I-Genes for mood disorders.
Conclusions: Due to the complexity of biological processes involve in mood disorders, examining the features of BDNF systematically would provide opportunities to have a better understanding for the mechanisms underlying mood disorders.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:28:54Z (GMT). No. of bitstreams: 1
ntu-101-R99849004-1.pdf: 1970351 bytes, checksum: 3e19d76c89ccd721b7eb68efab7b411e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
中文摘要 III
Abstract V
Text contents VII
Figure contents IX
Table contents X
Introduction 1
Materials and Methods 6
1. Molecular evolution 6
Sequence and gene structure examination across species 6
Sequence analysis: Identity rate and multiple alignment 6
Positive selection 7
2. Systematic literature review 8
Exploring functions of pro-BDNF and m-BDNF 9
3. Pathway analysis 10
Protein-protein interaction 10
Pathways Annotation 10
Selection of pathways and genome-wide association data 11
Pathway analysis 12
Results 14
1. Molecular evolution 14
Sequence length and identity rate 14
Multiple alignments 14
Evolutionary selection 15
2. Systematic literature review 15
Genomic studies of BDNF 15
Mechanisms of pro-BDNF and m-BDNF in mood disorders 18
3. Pathway analysis 20
Discussion 22
Molecular evolution 22
Systematic literature review-Genomic studies of BDNF 24
Systematic literature review- Exploring functions of pro-BDNF and m-BDNF 25
Pathway analysis 27
Limitation 30
Reference 31
Figures and tables 44
Supplementary tables 55
dc.language.isoen
dc.subject情感性疾患zh_TW
dc.subject躁鬱症zh_TW
dc.subject神經滋養因子假說zh_TW
dc.subject系統生物學zh_TW
dc.subject腦衍生神經滋養因子zh_TW
dc.subject憂鬱症zh_TW
dc.subjectbipolar disorderen
dc.subjectmajor depression disorderen
dc.subjectmood disordersen
dc.subjectBrain-derived neurotrophic factoren
dc.subjectsystems biologyen
dc.subjectneurotrophic hypothesisen
dc.title探索腦衍生神經滋養因子之特徵及其在情緒疾患中所扮演的角色zh_TW
dc.titleExplore the features of brain-derived neurotrophic factor in mood disordersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳為堅,蕭朱杏,曾宇鳳
dc.subject.keyword腦衍生神經滋養因子,情感性疾患,憂鬱症,躁鬱症,神經滋養因子假說,系統生物學,zh_TW
dc.subject.keywordBrain-derived neurotrophic factor,mood disorders,major depression disorder,bipolar disorder,neurotrophic hypothesis,systems biology,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved