請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | |
| dc.contributor.author | Jung-Chi Tai | en |
| dc.contributor.author | 戴榮吉 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:28:39Z | - |
| dc.date.available | 2017-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | [1] P. J. E. Peebles, and B. Ratra, Rev. Mod. Phys. 75 (2003) 559.
[2] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, A. Capra, C. L. Cesar, M. Charlton, A. Deller, P. H. Donnan, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, C. A. Isaac, S. Jonsell, L. Kurchaninov, A. Little, N. Madsen, J. T. K. McKenna, S. Menary, S. C. Napoli, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. . Rasmussen, F. Robicheaux, E. Sarid, C. R. Shields, D. M. Silveira, S. Stracka, C. So, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 483 (2012) 439. [3] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics Cambridge University Press (2000). [4] P. L. Taylor and O. Heinonen, A Quantum Approach to Condensed Matter Physics Cambridge University Press (2002). [5] N. W. Ashcroft and N. D. Mermin (Author), Solid State Physics Brooks Cole (1976). [6] Charles Kittel, Introduction to Solid State Physics Wiley (2004). [7] I. N. Levine, Quantum Chemistry Prentice Hall India (2008). [8] J. P. Lowe, and K. Peterson, Quantum Chemistry Academic Press (2005). [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). [10] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005). [11] http://www.itrs.net/ [12] KSV system Manual [13] http://nems.ntu.edu.tw/ [14] M. Kleman, O. D. Lavrentovich, Soft Matter Physics: An Introduction Springer (2002). [15] M. ONeill and S. M. Kelly, Adv. Mat. 23, 566 (2011). [16] H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications Wiley-VCH (2006). [17] T. A. Skotheim and J. Reynolds, Handbook of Conducting Polymers CRC Press (2007). [18] J. E. Anthony, Chem. Rev. 106, 5028 (2006). [19] H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices Academic Press (2000). [20] S. R. Forrest, Nature 428, 911 (2004). [21] A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev. 110, 3 (2010). [22] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997). [23] J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 286, 1550 (1999). [24] J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H. Moore, and R. Shashidhar, Phys. Rev. Lett. 89, 086802 (2002). [25] S. Lyshevski, Nano and Molecular Electronics CRC Press (2007). [26] N. J. Tao, Nat. Nanotech. 1, 173 (2006). [27] I. Zuti c, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004). [28] S. Maekawa, Concepts in Spin Electronics Oxford University Press (2006). [29] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mat. 11, 372 (2012). [30] T. Jungwirth, J. Wunderlich, and K. Olejn k, Nat. Mat. 11, 382 (2012). [31] Z. V. Vardeny, Organic Spintronics CRC Press (2010). [32] http://www.nobelprize.org/ [33] A. Fert, Rev. Mod. Phys. 80, 1517 (2008). [34] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 5546 (2001). [35] C. Chappert, A. Fert, and F. Nguyen Van Dau, Nat. Mat. 6, 813 (2007). [36] S. D. Bader and S. S. P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010). [37] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). [38] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science 325, 1515 (2009). [39] D. D. Awschalom, and M. E. Flatt e, Nat. Phys. 3, 153 (2007). [40] T. Dietl, D. D. Awschalom, M. Kaminska, H. Ohno, Spintronics Academic Press (2008). [41] R. Jansen, Nat. Mat. 11, 400 (2012). [42] D. Pesin and A. H. MacDonald, Nat. Mat. 11, 409 (2012). [43] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002). [44] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004). [45] V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nature Mater. 8, 707 (2009). [46] W. Xu, G. J. Szulczewski, P. LeClair, I. Navarrete, R. Schad, G. Miao, H. Guo, and A. Gupta, Appl. Phys. Lett. 90, 072506 (2007). [47] T. Ikegami, I. Kawayama, M. Tonouchi, S. Nakao, Y. Yamashita, and H. Tada, Appl. Phys. Lett. 96, 153304 (2008). [48] H. Vinzelberg, J. Schumann, D. Elefant, R. B. Gangineni, J. Thomas, and B. B uchner, J. Appl. Phys. 103, 093720 (2008). [49] Y. Liu, T. Lee, H. E. Katz, and D. H. Reich, J. Appl. Phys. 105, 07C708 (2009). [50] K.-S. Li, Y.-M. Chang, S. Agilan, J.-Y. Hong, J.-C. Tai, W.-C. Chiang, K. Fukutani, P. A. Dowben, and Minn-Tsong Lin, Phys. Rev. B 83, 172404 (2011). [51] J. Kumar, R. K. Singh, P. K. Siwach, H. K. Singh, R. Singh, R. C. Rastogi, O. N. Srivastava, Solid State Commun. 138, 422 (2006). [52] S. Majumdar, R. Laiho, P. Laukkanen, I. J. V ayrynen, H. S. Majumdar, and R. Osterbacka, Appl. Phys. Lett. 89, 122114 (2006). [53] S. Majumdar, H. Huhtinen, H. S. Majumdar, R. Laiho, and R. Osterbacka, J. Appl. Phys. 104, 033910 (2008). [54] N. A. Morley, A. Rao, D. Dhandapani, and M. R. J. Gibbs, M. Grell and T. Richardson, J. Appl. Phys. 103, 07F306 (2008). [55] Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Phys. Rev. B 79, 075312 (2009). [56] T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98 , 016601 (2007). [57] J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 100, 226603 (2008). [58] G. Szulczewski, H. Tokuc, K. Oguz, and J. M. D. Coey, Appl. Phys. Lett. 95, 202506 (2009). [59] L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin, and A. J. Drew, Nat. Mat. 10, 39 (2011). [60] Z. V. Vardeny, Nature Mater. 8, 91 (2009). [61] G. Szulczewski, S. Sanvito, and M. Coey, Nature Mater. 8, 693 (2009). [62] A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K.W. Kim, H. Bouyan f, F. Bourqui, C. Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha, and E. Morenzoni, Nature Mater. 8, 109 (2009). [63] M. Cinchetti, K. Heimer, J.-P. W ustenberg, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. Gao, and M. Aeschlimann, Nature Mater. 8, 115 (2009). [64] K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401 (1999) 572. [65] J. R. Petta, S. K. Slater, and D. C. Ralph, Phys. Rev. Lett. 93 (2004) 136601. [66] S. Sanvito, Nature Phys. 6, 562 (2010). [67] L. E. Hueso, I. Bergenti, A. Riminucci, Y. Zhan, and V. Dediu, Adv. Mater. 19, 2639 (2007). [68] T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nature Mater. 9, 345 (2010). [69] J.-W. Yoo, C.-Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, A. J. Epstein, Nature Mater. 9, 638 (2010). [70] S. Pramanik, C.-G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth, and M. Cahay, Nature Nanotech. 2, 216 (2007). [71] D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.-G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, Phys. Rev. Lett. 104, 236602 (2010). [72] C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petro , and A. Fert, Nature Phys. 6, 615 (2010) [73] A. R. Rocha, V. M. Garc a-Su arez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater. 4, 335 (2005). [74] L. Bogani and W. Wernsdorfer, Nature Mater. 7, 179 (2008). [75] E. A. Osorio, K. Moth-Poulsen, H. S. J. van der Zant, J. Paaske, P. Hedeg rnd, K. Flensberg, J. Bendix, and T. Bj nholm, Nano Lett. 10, 105 (2010). [76] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011). [77] A. Aviram, and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). [78] K. Moth-Poulsen, and T. Bjornh m, Nature Nanotech. 4, 551 (2009). [79] J. R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009). [80] S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Nature Nanotech. 6, 185 (2011). [81] S. Sahoo, T. Kontos, J. Furer, C. Ho mann, M. Gr aber, A. Cottet, and C. Sch onenberger, Nature Phys. 1, 99 (2005). [82] L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnell, J. P. Vald es-Herrera, B. D. Simons, P. B. Littlewood, E. Artacho, A. Fert, and N. D. Mathur, Nature 445, 410 (2007). [83] D. R. Talham, Chem. Rev. 104, 5479 (2004). [84] C. P. Collier, E. W. Wong, M. Belohradsk y, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999). [85] Y.-M. Chang, K.-S. Li, W.-C. Chiang, J.-Y. Lin, and Minn-Tsong Lin, Phys. Rev. B 79, 012401 (2009). [86] Y.-M. Chang, K.-S. Li, H.-B. Huang, M.-J. Tung, S.-Y. Tong and Minn-Tsong Lin, J. Appl. Phys. 107, 093904 (2010). [87] J.-C. Tai, J.-C. Huang, Y.-M. Chang, K.-S. Li, J.-Y. Hong, S.-S. Wong, W.-C. Chiang, and Minn-Tsong Lin, Appl. Phys. Lett. 96, 262502 (2010). [88] J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. 69, 708 (1996). [89] R. J. M. van de Veerdonk, J. Nowak, R. Meservey, J. S. Moodera, and W. J. M. de Jonge, Appl. Phys. Lett. 71, 2839 (1997). [90] A. Riminucci, M. Prezioso, P. Graziosi, and C. Newby, Appl. Phys. Lett. 96, 112505 (2010). [91] J. G. Simmons, J. Appl. Phys. 34, 1793 (1963). [92] C. H. Ho, Minn-Tsong Lin, Y. D. Yao, S. F. Lee, C. C. Liao, F. R. Chen, and J. J. Kai, J. Appl. Phys. 90, 6222 (2001). [93] S. Ranganathan, I. Steidel, F. Anariba, and R. L. McCreery, Nano Lett. 1, 491 (2001). [94] J. M. Beebe, B. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006). [95] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007). [96] V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78, 115203 (2008). [97] W. Wang and C. A. Richter, Appl. Phys. Lett. 89, 153105 (2006). [98] M. Urdampilleta, S. Klyatskaya, J-P. Cleuziou, M. Ruben, and W.Wernsdorfer, Nature Mater. 10, 52 (2011). [99] Y. Ando, J. Murai, T. Miyashita, and T. Miyazaki, Thin Solid Films 331, 158 (1998). [100] T. X. Wang, H. X. Wei, Z. M. Zeng, X. F. Han, Z. M. Hong, and G. Q. Shi, Appl. Phys. Lett. 88, 242505 (2006). [101] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials Wiley-IEEE Press (2008). [102] S. Blundell, Magnetism in Condensed Matter Oxford University Press (2001). [103] R. Skomski, Simple Models of Magnetism Oxford University Press (2008). [104] R. M. White, Quantum Theory of Magnetism Springer (2010). [105] D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Ho mann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Science 326, 411 (2009). [106] M. Getzla , Fundamentals of Magnetism Springer (2010). [107] J. M. D. Coey, Magnetism and Magnetic Materials Coey (2010). [108] K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials Springer (2003). [109] S. Sanvito, Nature Mater. 6, 803 (2007). [110] H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel, M. Piantek, X. Xu, Ph. Eckhold, W. Kuch, K. Baberschke, P. M. Panchmatia, B. Sanya, P. M. Oppeneer, and O. Eriksson, Nature Mater. 6, 516 (2007). [111] Xi Chen, Ying-Shuang Fu, Shuai-Hua Ji, Tong Zhang, Peng Cheng, Xu-Cun Ma, Xiao-Long Zou, Wen-Hui Duan, Jin-Feng Jia, and Qi-Kun Xue, Phy. Rev. Lett. 101, 197208 (2008). [112] C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L. Limot, and J. P. Bucher, Phy. Rev. Lett. 101, 116602 (2008). [113] S. N. Yaliraki, M. Kemp, and M. A. Ratner, J. Am. Chem. Soc. 121, 3428 (1999). [114] M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, and V. Podzorov, Nature Mater. 7, 84 (2008). [115] Z. Liu, A. A. Bol, and W. Haensch, Nano Lett. 11, 523 (2010). [116] T. C. Kreutz, E. G. Gwinn, R. Artzi, R. Naaman, H. Pizem, and C. N. Sukenik, Appl. Phys. Lett. 83, 4211 (2003). [117] I. Carmeli, F. Bloom, E. G. Gwinn, T. C. Kreutz, C. Scoby, A. C. Gossard, S. G. Ray, and R. Naaman, Appl. Phys. Lett. 89, 112508 (2006). [118] S. N. Ahmad, S. G. Rao, S. A. Shaheen, D. Magana, and G. F. Strouse, Appl. Phys. Lett. 92, 112511 (2008). [119] X. Ling and J. Zhang, Small 6, 2020 (2010). [120] R. Vollmer, Th. Gutjahr-L oser, J. Kirschner, S. van Dijken, and B. Poelsema, Phys. Rev. B 60, 6277 (1999). [121] W. Xu, J. Brauer, G. Szulczewski, M. S. Driver, and A. N. Caruso, Appl. Phys. Lett. 94, 233302 (2009). [122] T. P. I. Saragi, C. Schmidt, K. Schultz, T.Weis, J. Salbeck, and A. Ehresmann, J. Magn. Mag. Mat. 321, 2204 (2009). [123] D. K. Schwartz, Surf. Sci. Rep. 27, 245 (1997). [124] http://www.nec.com/ [125] P. J. F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications Cambridge University Press (2011). [126] S. Saito and A. Zettl, Carbon Nanotubes: Quantum Cylinders of Graphene Elsevier Science (2008). [127] A. K. Geim and K. S. Novoselov, Nat. Mat. 6, 183 (2007). [128] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004). [129] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004). [130] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. R/'ohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mat. 8, 203 (2009). [131] S. J. Chae, F. G une, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Adv. Mat. 21, 2328 (2009). [132] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruo , Science 324, 1312 (2009). [133] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruo , Nature 442, 282 (2006). [134] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, Nana Lett. 7, 3394 (2007). [135] D. Li, M. B. M uller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008). [136] S. Park, and R. S. Ruo , Nat. Nanotech. 4, 217 (2009). [137] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, Nat. Nanotech. 3, 563 (2008). [138] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, Adv. Funct. Mater. 18, 1518 (2008). [139] P. R. Wallace, Phys. Rev. 71, 622 (1947). [140] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [141] A. K. Geim, Science 324, 1530 (2009). [142] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). [143] O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008). [144] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, Science 327, 5966 (2010). [145] M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, and M. C. McAlpine, Nat. Com. 3, 763 (2012). [146] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009). [147] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruo , Nature 448, 457 (2007). [148] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 335, 1326 (2012). [149] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotech. 3, 538 (2008). [150] L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131, 1043 (2009). [151] J.-H. Chen, M. Ishigami, C. Jang1, D.R. Hines, M.S. Fuhrer, E.D. Williams, Adv. Mat. 19, 3623 (2007). [152] X. Liang, Z. Fu, and S. Y. Chou, Nano Lett. 7, 3840 (2007). [153] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Adv. Mat. doi: 10.1002/adma.201200489, (2012). [154] W. S. Hummers, R. E. O eman, J. Am. Chem. Soc. 80, 1339 (1958). [155] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotech. 4, 25 (2009). [156] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Adv. Mat. 20, 4490 (2008). [157] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, and X. Zhang, Chem. Mater. 22, 2213 (2010). [158] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Chem. Commun. 46, 1112 (2010). [159] V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruo , S.K. Manohar, Angew. Chem. Int. Ed. 49, 2154 (2010). [160] A. R. Tao, J. Huang, and P. Yang, Acc. Chem. Res. 41, 1662 (2008). [161] V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, and S. Roth, Chem. Mater. 10, 2338 (1998). [162] X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, and H. Dai, J. Am. Chem. Soc. 129, 4890 (2007). S.-S. Wong, W.-C. Chiang, and M.-T. Lin, Appl. Phys. Lett. 96, 262502 (2010). [163] J.-C. Tai, J.-C. Huang, Y.-M. Chang, K.-S. Li, W.-C. Chiang, M.-T. Lin, Appl. Phys. Express 5, 063006 (2012). [164] N. L. Jeon, K. Finnie, K. Branshaw, and R. G. Nuzzo, Langmuir 13, 3382 (1997). [165] Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, Nano Lett. 8, 20 (2008). [166] Y. Liang, D. Wu, X. Feng, and K. M ullen, Adv. Mat. 21, 1679 (2009). [167] S. Biswas and L. T. Drzal, Nano Lett. 9, 167 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65179 | - |
| dc.description.abstract | 整合分子電子學、磁學、碳基科學和奈米科技形成新興跨領域的分子自旋電子學、奈米磁學和石墨烯科學。 在此論文中,有三個主要的題目: 1. 運用分子級技術製備分子自旋閥。 2. 利用單分子層調控奈米薄膜的磁性。 3. 轉移可控制分子密度的石墨烯分子。 實驗結果顯示,利用分子級技術製備的分子自旋閥可以展現清楚的室溫穿隧磁阻效應,此結果表明大面積分子策略可以成功解決之前分子自旋閥的複雜磁阻問題。 另一方面,我們確定了單分子層的官能基會影響鄰近鐵磁奈米薄膜的磁性,此結果告訴我們在設計分子級自旋電子元件時必須考慮或利用這個重要的效應。 在第三部分,我們設計了一種新方法去轉移可控制分子密度的石墨烯到不同的基板,這對於石墨烯的應用是必需的。 此研究提供了重要資訊去設計和製備具備可撓性和非揮發性的奈米電子元件。 | zh_TW |
| dc.description.abstract | Molecular spin electronics, nano-magnetism, and graphene science are new emergence interdisciplinary field which combine the molecular electronics, magnetism, carbon-based science, and nanotechnology. In this thesis, we try to study three main topics related to above research: (i)fabrication of molecular spin valve with molecular technology. (ii) molecular tuning of nanomagnetism of magnetic thin-films. (iii) transfer of transparent graphene with controllable molecular density. The results show that we could observe room-temperature tunnel magnetoresistance effect in Langmuir-Blodgett-film molecular spin valve, and its clear parallel/antiparallel states prove our strategy of large-area molecular junction could solve the geometric
problem in previous molecular spin valve. On the other hand, we also confirm the functional group of molecular monolayer could influence the ferromagnetic (FM) properties of FM thin-film, and it means we need to consider this effect in fabricating molecular-level spin electronic devices. In the third topic, we design an alternative way to transfer the graphene layer with controllable molecular density to the substrate with different surface property which is necessary for different application. These studies may provide useful information for design and fabricating flexible non-volatile electronic devices for future application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:28:39Z (GMT). No. of bitstreams: 1 ntu-101-D98222022-1.pdf: 18158992 bytes, checksum: f15f5c535c51001cf712f03d80c02df2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 General introduction and motivation 1
2 Apparatuses 8 2.1 General picture of fabrication and analysis . . . . . . . . . . . . . . . 8 2.2 Instrument for preparation of Ferromagnetic thin film . . . . . . . . . 11 2.2.1 Physical vapor deposition: sputtering system . . . . . . . . . . 11 2.2.2 Preparation of ferromagnetic thin film by sputtering . . . . . . 13 2.3 Preparation system of monolayer-level molecular layer . . . . . . . . . 14 2.3.1 Deposition of molecular Materials . . . . . . . . . . . . . . . . 14 2.3.2 Preparation of molecular-level thin films . . . . . . . . . . . . 15 2.4 Preparation and transfer of graphene . . . . . . . . . . . . . . . . . . 16 2.4.1 Machine and tool kits in preparation of graphene . . . . . . . 16 2.4.2 Methods for transfer of graphene . . . . . . . . . . . . . . . . 17 2.5 Measurement system . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 Measurement of transport properties . . . . . . . . . . . . . . 24 2.5.2 Measurement of magnetic properties . . . . . . . . . . . . . . 25 2.5.3 Measurement of morphology properties . . . . . . . . . . . . . 26 2.5.4 Measurement of optical properties . . . . . . . . . . . . . . . . 26 3 Basic knowledge of electronics, nanoelectronics, organic and molecular electronics, and spintronics 28 3.1 Physical principle of transport in devices . . . . . . . . . . . . . . . . 29 3.1.1 General electron transport properties . . . . . . . . . . . . . . 29 3.1.2 Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.3 From electronics to nanoelectronics . . . . . . . . . . . . . . . 33 3.1.4 From organic electronics to molecular electronics . . . . . . . . 35 3.2 Introduction to Spintronics . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Overview of Spin transport . . . . . . . . . . . . . . . . . . . 40 3.2.2 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.3 Spin valve and pseudo-spin-valve . . . . . . . . . . . . . . . . 46 3.2.4 Active devices and Material science of spintronics . . . . . . . 48 4 Molecular spin valve 51 4.1 Organic Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Molecular spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Challenge of molecular spinronics and motivation . . . . . . . . . . . 55 4.3.1 Toward monolayer-level and single molecule . . . . . . . . . . 56 4.3.2 Challenge of device-fabrication . . . . . . . . . . . . . . . . . . 57 4.3.3 Problem of self-assembled-monolayers spin valve . . . . . . . . 57 4.3.4 Experimental design to solve the problem . . . . . . . . . . . . 57 4.3.5 Possible solution: large junction area . . . . . . . . . . . . . . 57 4.3.6 Construction of molecular junction with Langmuir-Blodgett Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Experimental processes . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Fabrication of molecular spin valve . . . . . . . . . . . . . . . 60 4.4.2 Measurement of Molecular Spin Valve . . . . . . . . . . . . . . 61 4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.1 2 Monolayers molecular-spin-valve . . . . . . . . . . . . . . . . 62 4.5.2 1 Monolayer molecular-spin-valve . . . . . . . . . . . . . . . . 65 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Molecular tuning of nanomagnetism 72 5.1 Introduction to Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.1 Spin-related science . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.2 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Interface science related to organic spintronics and molecular science . 78 5.2.1 Relation to organic spintronics and molecular spintronics . . . 78 5.2.2 Molecular modification of monolayer molecule . . . . . . . . . 79 5.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.1 Interface between organic layer and ferromagnetic thin lm . . 84 5.3.2 Key issues in molecular spin valve: impact of functional groups of molecular monolayer . . . . . . . . . . . . . . . . . . . . . . 84 5.3.3 Interface between molecular monolayer and ferromagnetic thin film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 Experimental design to study the impact of functional groups . . . . 85 5.4.1 Construction of molecular surface with different functional groups and Choosing ferromagnetic materials . . . . . . . . . 85 5.5 Experimental processes . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.1 Measurement of bi-layer systems . . . . . . . . . . . . . . . . . 89 5.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.1 CoFe on Langmuir-Blodgett films . . . . . . . . . . . . . . . . 91 5.6.2 NiFe on Langmuir-Blodgett films . . . . . . . . . . . . . . . . 93 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Nanotechnology to transfer transparent graphene with controllable molecular density 99 6.1 Introduction to carbon-based molecular materials . . . . . . . . . . . 101 6.1.1 Overview of synthesis of Graphene. . . . . . . . . . . . . . . . 103 6.1.2 The beginning of Graphene science. . . . . . . . . . . . . . . . 104 6.1.3 Mass production methods of graphene . . . . . . . . . . . . . 104 6.2 Physical properties of graphene . . . . . . . . . . . . . . . . . . . . . 107 6.2.1 Band structure and Dirac Fermion in Graphene . . . . . . . . 108 6.2.2 Spin transport and magnetism of graphene system . . . . . . . 109 6.3 Motivation and Experimental Design to study the graphene . . . . . 111 6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.2 Choosing synthesis-method of graphene . . . . . . . . . . . . . 113 6.3.3 Choosing transfer-method of graphene . . . . . . . . . . . . . 113 6.4 Experimental processes . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.1 Synthesis of graphene . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.2 Extraction of graphene . . . . . . . . . . . . . . . . . . . . . . 114 6.4.3 Transferring graphene . . . . . . . . . . . . . . . . . . . . . . 115 6.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.1 From graphite to graphene oxide to reduced graphene oxide . 116 6.5.2 LB-film of graphene and transferred graphene . . . . . . . . . 118 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7 Summary 127 | |
| dc.language.iso | en | |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | 分子電子學 | zh_TW |
| dc.subject | 奈米磁學 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 奈米電子學 | zh_TW |
| dc.subject | nanoelectronics | en |
| dc.subject | graphene | en |
| dc.subject | nano magnetism | en |
| dc.subject | molecular electronics | en |
| dc.subject | spin electronics | en |
| dc.title | "分子級自旋電子學, 利用分子調控奈米磁性, 及石墨烯分子的
奈米技術" | zh_TW |
| dc.title | Molecular Spin Electronics, Molecular Modification of
Nano-magnetism, and Graphene Molecular Nanotechnology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李連忠,陳俊維,何家驊,陳銘堯,江文中 | |
| dc.subject.keyword | 奈米電子學,自旋電子學,分子電子學,奈米磁學,石墨烯, | zh_TW |
| dc.subject.keyword | nanoelectronics,spin electronics,molecular electronics,nano magnetism,graphene, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 17.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
