Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorSheng-Yung Changen
dc.contributor.author張勝詠zh_TW
dc.date.accessioned2021-06-16T23:27:33Z-
dc.date.available2013-12-15
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-30
dc.identifier.citation1. R. S. Ohl. 'Light sensitive device' U.S. Patent 2,402,662, 1946.
2. K. A. Tsokos, 'Physics for the IB Diploma', Fifth edition, Cambridge University Press, Cambridge, 2008, ISBN 0521708206.
3. J. Perlin.'The Silicon Solar Cell Turns 50'. National Renewable Energy Laboratory. 2004, 50-54.
4. D. S. Kim, A. M. Gabor, V. Yelundur, A. D. Upadhyaya, V. Meemongkolkiat, A. Rohatgi. 'String ribbon silicon solar cells with 17.8% efficiency'. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003, 2, 1293–1296.
5. Y. Yang. “Material from Sumitomo Chemical Employed in UCLA’s Tandem Polymer Photovoltaic Cell Achieving Power Conversion Efficiency of 10.6%”, 2012, www.sumitomo-chem.co.jp/english/
6. A. Moliton, J. M. Nunzi, “How to Model the Behavior of Organic Photovoltaic Cells.” Polymer Int. 2006, 55, 583-600.
7. B. A. Gregg, M. C. Hanna, “Comparing Organic to Inorganic Photovoltaic Cells: Theory, Experiment, and Simulation.” J. Appl. Phys. 2003, 93, 3605-3614.
8. J. M. Nunzi. “Organic Photovoltaic Materials and Devices.” C. R. Physique. 2002, 3, 523-542.
9. P. Peumans, A. Yakimov, S. R. Forrest. “Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells.” J. Appl. Phys. 2003, 93, 3693-3723.
10. M. S. Kim. “Understanding Organic Photovoltaic Cells, Electrode, Nanostructure, Reliability, and Performance” University of Michigan, 2009, 115 pages; 3354281.
11. H. Hoppe, N. S. Sariciftci. “Organic Solar Cells: An Overview.” J. Mater. Res. 2004, 19, 1924-1945.
12. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger. “Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%.” Nature Photonics. 2009, 3, 297-303.
13. F. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson, O.Inganas. “Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells.” Adv. Mater. 2006, 18, 2169-2173.
14. F. Wang, J. Luo, K. Yang, J. Chen, F. Huang, Y. Cao. “Conjugated Fluorene and Silole Copolymers:  Synthesis, Characterization, Electronic Transition, Light Emission, Photovoltaic Cell, and Field Effect Hole Mobility.” Macromolecules.
2005, 38, 2253-2260.
15. N. Blouin, A. Michaud, M. Leclerc. “A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells.” Adv. Mater. 2007, 19, 2295.
16. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger,
G. C. Bazan. “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.” Nat. Mater. 2007, 6, 497-500.
17. C. C. Chen, S. H. Chan, T. C. Chao, C. Ting, and B. T. Ko.
“Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells “J. AM. CHEM. SOC. 2008, 130, 12828–12833.
18. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger,
C. J. Brabec. “Design Rules for Donors in Bulk-Heterojunction Solar Cells
—Towards 10 % Energy-Conversion Efficiency.” Adv. Mater. 2006, 18, 789-794.
19. C. Shi, Y. Yao, Y. Yang, Q. Pei. “Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application.” J. Am. Chem. Soc. 2006, 128, 8980.
20. Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber,
C. Brabec. “Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications.” Macromolecules. 2007, 40, 1981-1986.
21. I. Gur, N. Fromer, C. P. Chen, A. Kanarkas, A. P. Alivisatos. “Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals.” Nano Lett. 2007, 7, 409-414.
22. S. H. Chan, C. P. Chen, T. C. Cao, C. Ting, B. T. Ko. “Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene−Phenylene−Thiophene (TPT) as Coplanar Units.” Macromolecules
2008, 41, 5519-5526.
23. X. Yang, J. Loos. “Toward high-performance polymer solar cells: The importance of morphology control.” Macromolecules 2007, 40, 1354-1362.
24. X. Yang, J. K. J. van Duren, R. A. J. Janssen, M. A. J. Michels, J. Loos. “Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices.” Macromolecules 2004, 37, 2151-2158.
25. H. C. Hesse, J. Weickert, C. Hundschell, X. L. Feng, K. Mullen, B. Nickel, A. J. Mozer, L. S. Mende. “Perylene Sensitization of Fullerenes for Improved Performance in Organic Photovoltaics.” Adv. Energy Mater. 2011, 1, 861–869.
26. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, F. N. Diederich, R. L. Whetten,
Y. Rubin, M. M. Alvarez, S. J. Anz. “Photophysical Properties of CBo.”
J. Phys. Chem. 1991, 95, 11-12.
27. S. Shoaee, T. M. Clarke, C. Huang, S. Barlow, S. R. Marder ,M. Heeney,
I. McCulloch, J. R. Durrant. ”Acceptor energy level control of charge photogeneration in organic donor/acceptor blends.” J. Am. Chem. Soc. 2010, 132,
12919-12926 .
28. T. Kircher, H. G. Lohmannsroben. “Photoinduced charge recombination reactions of a perylene dye in acetonitrile.” Phys. Chem. Chem. Phys. 1999, 1, 3987-3992.
29. M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec ,
P. Schilinsky, C. N. Hoth. “Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells.” Adv. Funct. Mater. 2010, 20, 338-346.
30. L. Schmidt-Mende , A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend,
J. D. MacKenzie. “Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics.” Science. 2001, 293, 1119-1122.
31. H. C. Hesse, J. Weickert, M. Al-Hussein, L. Doessel, X. Feng, K. Muellen, L. Schmidt-Mende. “Discotic materials for organic solar cells: Effects of chemical structure on assembly and performance.” Solar Energy Mater. Solar Cells. 2010, 94, 560-567.
32. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz,
H. Sirringhaus, T. Pakula, K. Mullen. “A Zone-Casting Technique for Device Fabrication of Field-Effect Transistors Based on Discotic Hexa-peri-hexabenzocoronene.” Adv. Mater. 2005, 17, 684-689.
33. D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller,R. Gaudiana,
C. Brabec. “High Photovoltaic Performance of a Low-Bandgap Polymer.” Adv. Mater. 2006 , 18 , 2884-2889.
34. Y. Liang, L. Yu. “A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance.” Acc. Chem. Res. 2010, 43 , 1227-1236.
35. C. Shuttle , B. O’Regan , A. Ballantyne , J. Nelson , D. Bradley ,J. Durrant.
“Bimolecular recombination losses in polythiophene: Fullerene solar cells.”
Phys. Rev. B 2008, 78, 113201.
36. L. Dou, J. You, J. Yang, C. C. Chen , Y. He, S. Murase, T. Moriarty, K. Emery, G. Li , Y. Yang. “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer.” Natural Photonics. 2012, 3, 180−185.
37. A. S. Haythem, L. Y. Lu, F. He, J. E. Bullock, W. Wang, B. Carsten, L. Yu. “Polyselenopheno[3,4-b]selenophene for Highly Efficient Bulk Heterojunction Solar Cells.” ACS Macro Lett. 2012, 1, 361−365.
38. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology.” Adv. Funct. Mater. 2005, 15, 1617-1622.
39. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang. “High-efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends.” Nat. Mater. 2005, 4, 864-868.
40. G. Li, Y. Yao, H.Yang, V. Shrotriya, G. Yang, Y. Yang “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644.
41. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan. “Efficiency Enhancement in Low Bandgap Polymer Solar Cells by Processing with Alkane Dithiols.” Nat. Mater., 2007, 6, 497-500.
42. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kin, K. Lee, G. C.Bazan, A. J. Heeger. ”Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells.” J. Am. Chem. Soc., 2008, 130, 3619-3623.
43. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom. “Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene):
Methanofullerene Bulk-Heterojunction Solar Cells.” Adv. Funct. Mater. 2006, 16, 699–670.
44. H.C. Liao, C. S. Tsao, T. H. Lin, M. H. Jao, C. M. Chuang, S. Y. Chang et al. “Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell with Enhanced Performance.” ACS Nano, 2012, 6, 1657–1666.
45. D. Muhlbacher, M. Scharber1, M. Morana1, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec. “High photovoltaic performance of a low-bandgap polymer.” Adv. Mater, 2006, 18, 2884–2889.
46. C. Soci, I.-W. Hwang, D. Moses1, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, A. J. Heeger. “Photoconductivity of a low-bandgap conjugated polymer.” Adv. Funct. Mater. 2007, 632-636.
47. C. Winder, G. Matt, J. C. Hummelen, R. A. J. Janssen, N. S. Sariciftci,
C. J. Brabec. Sensitization of low bandgap polymer bulk heterojunction solar cells” Thin Solid Films, 2002, 403, 373-379.
48. J. Hauch, P. Schilinsky, S. Choulis, S. Rajoelsen, C. J. Brabec. “The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells.”
Appl. Phys. Lett, 2008, 93, 103306.
49. C. J. Brabec, J. Durrant. “Solution-Processed Organic Solar Cells.” MRS Bull, 2008, 33, 670.
50. Y. Kim, M. Shin, H. Kim, Y. Ha, C. S. Ha. “Influence of electron-donating polymer addition on the performance of polymer solar cells.” J. Phys. D: Appl Phys, 2008, 41, 225101.
51. H. Kim, M. Shin, Y. Kim. “Distinct Annealing Temperature in Polymer:Fullerene:Polymer Ternary Blend Solar Cells. “J. Phys. Chem. C, 2009, 113, 1620-1623.
52. C. M. Bjo‥rstro‥m, S. Nilsson, A. Bernasik, A. Budkowski, M. Andersson,
K. O. Magnusson, E. Moons. “Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend—Effects of specific substrate interaction.” Appl. Surf. Sci, 2007, 253, 3906-3912.
53. J. Mei, K. R. Graham, R. Stalder and J. R. Reynolds. “Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells.” Org. Lett.,
2010, 12, 660-663.
54. G. Zhang, Y. Fu, Q. Zhang and Z. Xie. “Synthesis and Photovoltaic Properties of Conjugated Copolymers with Benzo[1,2-b:4,5-b′]dithiophene and Bis(thiophene)phthalimide Units.” Macromol. Chem. Phy.,2010, 211, 2596–2601.
55. E. Wang, Z. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O. Inganas, F. Zhang,
M. R. Andersson. “An easily accessible isoindigo-based polymer for high-performance polymer solar cells.” J. Am. Chem.Soc. 2011, 133, 14244–14247
56. A. C. Mayer, M. F. Toney, S. R. Scully, J. Rivnay, C. J Brabec; M. Scharber,
M. Koppe, M. Heeney, I.McCulloch, M. D. McGehee. “Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells.” Adv. Funct. Mater. 2009, 19, 1173–1179.
57. Nichole C. Cates, Roman Gysel, Zach Beiley, Chad E. Miller.” Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation.” Nano Lett., 2009, 9, 12, 4153-4157.
58. Y. C Huang, C. S. Tsao, C. M. Chuang, C. H. Lee, F. H. Hsu. “Small- and Wide-Angle X-ray Scattering Characterization of Bulk Heterojunction Polymer Solar Cells with Different Fullerene Derivatives.” J. Phys. Chem. C 2012, 116, 10238−10244.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65156-
dc.description.abstract本篇論文一共分為兩部分,第一部分是在二元混摻有機太陽能電池中,加入第三種聚合物,以期增強該光電元件的光捕獲範圍,或是產生高分子-富勒烯間的雙連續相,以提升其表面之相分離程度,達成改進效率之目的;第二部分是針對一種新穎異靛藍導電高分子,製備元件以進行效率最佳化的實驗。
在第一部分中,實驗的系統分別為P3HT:PC61BM以及PCPDTBT:PC61BM。P3HT,具有階段性退火後良好的結晶特性,PCPDTBT,為低能帶隙聚合物,在可見光譜波段有著更好的吸收性,實驗設計中我們在前述的兩個系統下,分別加入小比例的PCPDTBT及P3HT,使其成為三元混摻元件,最終最佳化的P3HT:PC61BM:PCPDTBT及PCPDTBT:PC61BM:P3HT系統相較於其在添加入第三種有機聚合物前,效率有10~20%的提升,最好的效率提升程度達到接近30%。
我們利用吸收光譜及外部量子效率量測分析比較之,結果發現P3HT:PC61BM:PCPDTBT系統在紅外光波長段,吸收度和量子效率相較於未加入PCPDTBT前有顯著之增加;而PCPDTBT:PC61BM:P3HT系統吸收光譜雖然在對應到P3HT的光吸收波段處有所增加,但外部量子效率是幾乎全波段性的上升而非只有局部提高。為了更進一步探討改進原因的差異性,我們使用原子力顯微鏡(AFM)觀察兩系統,發現P3HT:PC61BM:PCPDTBT系統如預期的有更分散、同質及平坦的表面,相較於P3HT:PC61BM,前者晶相聚集的程度縮小;而PCPDTBT:PC61BM:P3HT則比起PCPDTBT:PC61BM系統有著更明顯的結晶聚集、相分離現象,如此將有助於減少電子電洞對重組率,我們又針對此系統再作了穿透式電子顯微鏡(TEM)及掠角入射X光繞射分析(GIXRD),而確認了PCPDTBT及PCBM的聚集度增加的現象及混摻系統中P3HT(100)結晶面訊號的出現。
基於增強可見光的光捕獲範圍及對表面形態改質兩種目的,在三種材料中原先僅二元混摻的製程,補入第三種聚合物,在製程最佳化後P3HT:PC61BM:PCPDTBT(CB+ 3% DIO)最高達到4.0%的效率,效率提升的主因來自長波長段光子吸收度的增加;PCPDTBT:PC61BM:P3HT (CB+ 3% DIO)則是3.3%,主要改進因素為薄膜表面相分離程度及聚合物聚集體大小變大,以上觀察到的種種現象與原本實驗設計的預期相吻合。
在論文的第二部分主題為異靛藍,一種新穎的導電高分子、良好的電子受體及低能帶隙材料,使用自己合成的六類具有不同側鏈的異靛藍導電高分子PC8Ie,PCeI8,PC8I8,PCeIe,PC12Ie,和PCeI12,和PC60BM混摻以製作元件,在製程中分別依序以添加劑的有無、不同的混合比例、及旋鍍轉速以逐步達成效率最佳化,由於異靛藍的側鍊長度及結構對應到電子予體PCBM濃度會有不同的傳導能力,為較關鍵之因素,因此我們將著重在混合比例項上作更多的參數調控,最後,與PCBM混摻後得到PCeIe:PCBM最佳效率4.0%,PCeI8 為3.6%,PC8I8 3.3%為幾組較佳的成果,而後量測了這一系列元件的吸收光譜、外部量子效率、及掠角入射X光繞射等物理性質分析,以提供為此新導電高分子合成的元件設計之製程參數作為參考。
zh_TW
dc.description.abstractThis thesis contains two parts to investigate two new types of organic solar cell. The first one is about adding third polymer in the binary blend type of organic solar cells, thus it can enhance the light harvesting or generate more bi-continues phase that can achieve better phase separation in the active layer, finally accomplish the purpose of cell performance improvement; In the second part, we aim to investigate the structure effect of Isoindigo based conducting polymer on the performance of solar cell. This polymer exhibits low bandgap and is available from plant. We use it to make photovoltaic device and tune process conditions to optimize the performance of solar cell.
In the first part, the experimental systems are poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) and Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]-C61-butyric acid methyl ester (PCPDTBT: PC61BM), P3HT has good crystalline phase after annealing while PCPDTBT has better absorption in the NIR spectra and high Voc. In our experimental design we add low weight ratio of PCPDTBT and P3HT respectively in the P3HT:PC61BM and PCPDTBT:PC61BM binary devices and they thus become ternary blend devices.
We analyze the device by measuring the absorption spectra and external quantum efficiency (EQE), and find that both absorption intensity and external quantum efficiency of P3HT:PC61BM:PCPDTBT are obviously enhanced in the near infrared-visible spectrum compare to the P3HT:PC61BM binary system. In the case of PCPDTBT:PC61BM:P3HT, though the absorption intensity rises in the region related to the added P3HT, the enhancement of external quantum efficiency increases in almost from the UV-NIR region. For going into the details of this different causes of performance improvement, we utilize the atomic force microscopy (AFM) to observe those two systems, and we discover that the surface of P3HT:PC61BM:PCPDTBT smooth and better dispersed than that of P3HT:PC61BM, and the aggregations decreases; In contrast, PCPDTBT:PC61BM:P3HT ternary dissolved in CB+3% DiO has rougher surface, larger aggregation, thus contribute a decrease rate of charge recombination rate. Then we aim at PCPDTBT:PC61BM:P3HT system and further analyze it by transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD), thus acquire the PCPDTBT domain and PCBM clusters and detect the signal of P3HT (100) planes.
For enhancing the light harvesting in visible spectrum and tuning the nano-morphology of thin film and binary system, we include third polymer in the original binary blend system, after optimizing the process, the best power conversion efficiency of P3HT:PC61BM:PCPDTBT system is slightly above 4.0%. It is about 10% higher than the highest one of P3HT:PC61BM: binary blend device which is due to the additional absorption in near infrared-visible region. The best PCEs value of PCPDTBT:PC61BM:P3HT dissolved in CB+ 3% DiO is 3.3%, which is also 10~20% higher than that of PCPDTBT:PC61BM. We can attribute the improvement to the morphology changes which result in moderate phase separation, so the above-mentioned phenomena confirm our prediction from the experimental design of
this study.
The second topic in the thesis is concentrated on the effect of Isoindigo device, a widely-used polymer in dye industry from one century ago, also a low band gap material, which is suitable for light harvesting donors for organic solar cells when blended with PCBM. We have evaluated four isoindigo polymers with different side-chain:PC8Ie, PCeI8, PC8I8,and PCeIe which are synthesized in our laboratory. In the attempt to optimize their device performance, we change the process by adding additive, different mixing ratio, and processing spin rate, because the structure of side chain (linear or branch), the length of side chain and the concentration of PCBM all can influence the charge mobility. Eventually, we obtain the best power conversion efficiency on different polymers: 4.0% in PCeIe:PCBM, 3.6% in PCeI8:PCBM, 3.3% in PC8I8:PCBM. Then, we measure and analyze the absorption spectra, external quantum efficiency, atomic force microscopy, and grazing incidence x-ray diffraction series of the active layer of these devices, thus we can provide useful information for manufacturing Isoindigo devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:27:33Z (GMT). No. of bitstreams: 1
ntu-101-R99245012-1.pdf: 3862767 bytes, checksum: 7fb70fa95e6bf21bfb3190a354211b3d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iii
摘要 v
Abstract vii
Contents xi
Tables xiv
Figures xv
Chapter 1. Ternary blend solar cell: Introduction
1.1 Brief history of solar energy development 1
1.2 Three generations of solar cells 2
1.2.1 Generation I: conventional silicon-based solar cell devices 2
1.2.2 Generation II: thin film silicon-based photovoltaic devices 2
1.2.3 Generation III: organic photovoltaic devices and DSSC 3
1.3 Working principles of organic photovoltaic devices 5
1.4 Utilization of bulk heterojunction structure in organic solar cells 8
1.5 Efficiency improvement by light harvesting enhancement 8
1.6 Film morphology optimization of conducting polymer/fullerene derivatives by adding additives 21
Chapter 2. Ternary blend solar cell: Experimental Section
2.1 Chemical and instrumental characterizations 27
2.2 Progress of binary and ternary blend system 30
Binary system
2.2.1 Preparation of P3HT:PC61BM solar cells 30
2.2.2 Preparation of PCPDTBT:PC61BM solar cells 31
Ternary system
2.2.3 Design of P3HT:PC61BM:PCPDTBT solar cells 31
2.2.4 Design of PCPDTBT:PC61BM:P3HT solar cells 32
Preparation of the other kinds of samples
2.2.5 Preparation of samples for absorption spectra s 33
2.2.6 Preparation of samples for atomic force microscopic (AFM) ,Transmission Electron Microscopy (TEM) and grazing incidence X-Ray diffraction (GIXRD) measurements 34
2.2.7 Structural characterization 34
Chapter 3. Ternary blend solar cell: Results and discussion
3.1 Absorption spectra of binary and ternary BHJ solar cells 36
3.2 J-V curve and external quantum efficiency (EQE) characterization of binary and ternary bulk heterojunction solar cells 38
3.3 AFM figures of binary and ternary bulk heterojunction solar cells 45
3.4 GIXRD patterns and TEM scans of binary and ternary solar cells 49
Chapter 4. Ternary blend solar cell: Conclusion
4.1 Light harvesting enhancement in P3HT:PC61BM:PCPDTBT system 53
4.2 Surface morphology changes in PCPDTBT:PC61BM:P3HT system 54
Chapter 5. Isoindigo Organic Solar Cells: Introduction
5.1 Introduction to isoindigo devices 56
Chapter 6. Isoindigo Organic Solar Cells: Experimental Section
6.1 Chemical characterizations 59
6.2 Progress of isoindigo devices 61
Chapter 7. Isoindigo Organic Solar Cells: Results and discussion
7.1 Absorption spectra of isoindigo bulk heterojunction solar cells 64
7.2 J-V curve and external quantum efficiency (EQE) characterization of isoindigo bulk heterojunction solar cells 66
7.3 AFM scans and GIXRD of isoindigo bulk heterojunction solar cells 75
Chapter 8. Isoindigo Organic Solar Cells: Conclusion 83
Chapter 9. Recommendation 84
References 86
dc.language.isoen
dc.title三元混摻系統有機太陽電池與異靛藍有機太陽電池zh_TW
dc.titleTernary Blend Bulk Hetero Junction Organic Solar Cells and Isoindigo Organic Solar Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor林唯芳(Wei-Fang Su)
dc.contributor.oralexamcommittee許芳琪(Fang-Chi Hsu)
dc.subject.keyword有機太陽能電池,綠能,半導體,低能帶材料,二元混摻,三元混摻,異靛藍,zh_TW
dc.subject.keywordOrganic solar cell,Green energy,Semi-conductor,Low-bandgap material,Binary blend,Ternary blend,Isoindigo,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved