請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉超雄(Chau-Shioung Yeh) | |
| dc.contributor.author | Chia-Hao Lin | en |
| dc.contributor.author | 林家豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:27:13Z | - |
| dc.date.available | 2014-08-09 | |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | [1]Reissner, E. and Sagoci, H. F., Forced Torsional Oscillations of an Elastic Half Space.I, J. Appl. Phys,Vol.15, pp.652-654, 1944.
[2]Sagoci, H. F., Forced Torsional Oscillations of an Elastic Half Space.II, J. Appl. Phys, m Vol.15, pp.655-662, 1944. [3]Eason, G., On the torsional impulsive loading of an elstic half-space, Q. J. Mech. and Appl. Mech. Vol.17, pp.279-292, 1964. [4]Pekeris, C. & Alterman, Z. and Abramovici, F., Propagation of SH-torque pulse in a layered solid, Bul. Seism. Soc. Am. Vol.53, pp.39-57, 1963. [5]Chao, C. C., Dynamic response of an elastic half-space to tengential surface loading, J. Appl. Mech, Vol.27, pp.559-567, 1960. [6]Watanabe, K., Transient Response of a Layered Elastic Half Space Subjected to a Reciprocating Anti-plane Shear Load, Int.J.Solids Struct, Vol.13, pp.63-74 , 1977 [7]Yeh, C. S., Transient Response of an Elastic Half Space by a Moving Concentrated Torgue, World Scientific Review Volume-9in X 6in , Chap.13, pp.333-351, 2011. [8]de Hoop, A. P., A Modification of Cagniard's Method for Solving Seismic Pulse Problem, Appl. Sci. Res.,B Vol.8, pp.349-356, 1959. [9]Pekeris, C. L., The Seismic Surface Pulse, Proceeding of the National Academy of Science, Vol.41, pp.469-480, 1955. [10]Mitra.M, Disturbance Produced in an Elastic Half-space by a Impulsive Normal Pressure, Proc.Camb.Phil.Soc, Vol.60, pp.683-696, 1964 [11]Eason, G., The Displacements Produced in an Elastic Half-space by a Suddenly Applied Surface Force, J. Inst. Maths Applics, Vol.2, pp.299-326, 1966. [12]Gakenheimer, D.C. and Miklowitz, J., Transient Excitation of an Elastic Half-space by a Point Load Travelling on the Surface, J.Appl.Mech., Vol.36, pp.505-515, 1969 [13]Watanabe, K., Transient Response of an Acoustic Half-Space to a Rotating Point Load, Quart.Appl.Math, Vol.35-1, pp.39-48, 1978 [14]Scott, R.A. and Miklowitz, J., Transient Non-axisymmetric Wave Propagation in an Infinite Isotropic Elastic Plate, Int.J.Solids Structures, Vol.5, pp.65-79, 1969 [15]Kononov, A.V., de Borst, R., Wolfert, A.R.M., Radiation Emitted by a Constant Load Moving Uniformly in a Circle on an Elastically Supported Membrane, Wave Motion, Vol.33, pp.349-357, 2001 [16]Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematical Series (1964), Table 25.2 [17]Durbin, F., Numerical Inversion of Laplace Transforms:an Efficient Improvement to Dubner and Abate's Method, Computer Journal, Vol.17, pp.371-376, 1974. [18]Achenbach, J.D., Wave Propagation in Elastic Solids, North-Holland, Amsterdam (1984) [19]Graff, K.G., Wave Motion in Elastic Solids, Dover publications,New York (1975) [20]Miklowitz, J., The theory of Elastic Waves and Waveguides, North-Holland, Amsterdam (1973) [21]利岳聲, 半無限域表面承受集中載荷的瞬間解, 國立台灣大學土木工程研究所碩士論文(2009) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65150 | - |
| dc.description.abstract | 本文分析一沿圓周路徑等速移動之衝擊表面力,對彈性半無窮域所造成的暫態反應。分為兩主題,分別探討扭矩問題和垂直集中力問題;目的在於了解以旋轉型式移動之波源, 在不同移動速度下,對於彈性介質所造成的反應及波傳現象。
扭矩問題部分,在直角座標系統下,以Laplace轉換及Fourier轉換法求得頻率域之反應通解,進行積分反轉換時,分別考慮波之到達時間函數單值或多值情形, 搭配Cagniard-de Hoop法進行Laplace逆轉換求得時間域反應解析解;並分析表面位移數值結果及波傳現象。 垂直集中力問題部分,在圓柱座標系統下,以Laplace轉換及Hankel轉換法求得頻率域之反應通解,進行積分反轉換時,受限於待積函數過於複雜,無法再使用前人之方法求取解析解;因此在複數平面上選取一條最佳收斂的等效路徑,搭配數值積分方法如:高斯積分法及Durbin法,進行積分反轉換,求得表面位移數值結果。 本文對於兩個不同的非軸對稱問題,提供了不同的分析方法,除了得到解析解外,無法使用過去解析方法解決的問題,也以數值積分方法得到良好合理的結果。 | zh_TW |
| dc.description.abstract | In this thesis,we present the analysis of transient
response of an elastic half space due to impulsive surface loading moving with a constant speed along a circular path.Dividing into two topics,they are torsion problem and point force problem;our purpose is to find out the surface response and wave patterns of an elastic medium sujected to moving sources with different moving speed. On torsion problem,in Cartisian coordinate system,we derive the general solution of the response in frequency domain by Laplace transform and Fourier transform method,in the process of integral inversion,consider the arrival time function in single-valued or multi-valued separately,we derive the analytic solution of displacements in time domain by Cagniard-de Hoop method,which is used to deal with the Laplace inversion.We also analyze the numerical results of surface displacements and wave patterns. On point force problem,in cylindrical coordinate system,we derive the general solution of the response in frequency domain by Laplace transform and Hankel transform method,in the process of integral inversion,limited by highly complexity of the integrand,we can't derive the analytic solution by previous methods.Therefore,we choose the best convergent path in complex plane,with numerical integration methods such as Gaussian quadrature and Durbin method to carry out integral inversion,then we obtain numerical results of surface displacements. We provide different approches for two non-axisymmetric problems.Besides analytic solutions,proper and reasonable results are obtained by using numerical integration methods, including the unsolved problems by using analytic approachs in the past. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:27:13Z (GMT). No. of bitstreams: 1 ntu-101-R99521246-1.pdf: 2994793 bytes, checksum: 7f24419ae479a4116fddb8db513c2c55 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii 1 導論 1 1.1 研究動機與目的 . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . 1 1.3 …本文架構 . . . . . . . . . . . . . . . . . . . . . 3 2 基本理論與公式推導 4 2.1 波動方程式推導 . . . . . . . . . . . . . . . . . . 4 2.2 直角座標下之頻率域勢能函數 . . . . . . . . . . . . . 5 2.3 圓柱座標下之頻率域勢能函數 . . . . . . . . . . . . . 7 3 旋轉扭矩問題分析 10 3.1 初始條件與邊界條件 . . . . . . . . . . . . . . . . . 10 3.2 頻率域勢能函數 . . . . . . . . . . . . . . . . . 11 3.3 G之Laplace轉換 . . . . . . . . . . . . . . . . . 13 3.4 不動之集中扭矩 . . . . . . . .. . . . . . . . . . . 15 3.5 旋轉之集中扭矩 . . . . . . . .. . . . . . . . . . . 16 3.5.1 Case(1) . . . . . . . . . . . . . . . . . . . . 17 3.5.2 Case(2) . . . . . . . . . . . . . . . . . . . . 19 3.6 數值結果討論 . . . . . . . . . . . . . . . . . . . 21 3.7 表面波傳現象 . . . . . . . . . . . . . . . . . . . 23 4 旋轉垂直集中力問題分析 24 4.1 初始條件和邊界條件 . . . . . . . . . . . . . . . . . 24 4.2 數值積分方法 . . . . . . . . . . . . . . . . . . . 27 4.3 數值結果討論 . . . . . . . . . . . . . . . . . . . 32 5 結論與未來討論 35 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . 35 5.2 未來研究與展望. . . . . . . . . . . . . . . . . . 36 附錄 A:Durbin 法 . . . . . . . . . . . . .. . . . . . . . 37 附錄 B:(3.53) 及 (3.73)之推導 . . . . . . . . . . . . . . 43 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 暫態反應 | zh_TW |
| dc.subject | 移動型波源 | zh_TW |
| dc.subject | Cagniard-de Hoop法 | zh_TW |
| dc.subject | 半無窮域 | zh_TW |
| dc.subject | 衝擊表面力 | zh_TW |
| dc.subject | Durbin法 | zh_TW |
| dc.subject | Durbin method | en |
| dc.subject | half space | en |
| dc.subject | transient response | en |
| dc.subject | moving source | en |
| dc.subject | Cagniard-de Hoop method | en |
| dc.subject | impulsive surface loading | en |
| dc.title | 彈性半無限域承受旋轉表面力之暫態反應 | zh_TW |
| dc.title | Transient Response of an Elastic Half Space Subjected to Rotating Surface Forces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧崇任(Tsung-Jen Teng),陳東陽(Tung-Yang Chen),陳國慶(Kuo-Ching Chen) | |
| dc.subject.keyword | 衝擊表面力,半無窮域,暫態反應,移動型波源,Cagniard-de Hoop法,Durbin法, | zh_TW |
| dc.subject.keyword | impulsive surface loading,half space,transient response,moving source,Cagniard-de Hoop method,Durbin method, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
