請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65149完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳琪芳(Chi-Fang Chen) | |
| dc.contributor.author | Wei-Yen Chu | en |
| dc.contributor.author | 朱韋諺 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:27:10Z | - |
| dc.date.available | 2020-03-03 | |
| dc.date.copyright | 2020-03-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-21 | |
| dc.identifier.citation | [1] iea, Offshore Wind Outlook 2019 World Energy Outlook Special Report, 2019. Available: https://www.iea.org/offshorewind2019/
[2] 行政院,重要政策 - 推動風力發電4年計畫—潔淨能源 乘風而起,Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/ef93b5c1-85ea-4b5f-ac55-f460d9204258 [3] 4C offshore. Available: https://www.4coffshore.com/windfarms/windspeeds.aspx [4] 周蓮香、林幸助、孫建平,'中華白海豚族群生態與河口棲地監測',行政院農委會林務局,2018 [5] 周蓮香、丁建均、林幸助、孫建平,'中華白海豚族群生態與河口棲地監測(II)',行政院農委會林務局,2019 [6] IUCN. RED LIST. Available: https://www.iucnredlist.org/species/133710/122515524%3Ca%20href= [7] J. C. Goold and T. A. Jefferson, 'A note on clicks recorded from free-ranging Indo-Pacific humpback dolphins, Sousa chinensis,' Aquatic mammals, vol. 30, no. 1, pp. 175-178, 2004. [8] P. Q. Sims, R. Vaughn, S. K. Hung, and B. Würsig, 'Sounds of Indo-Pacific humpback dolphins (Sousa chinensis) in west Hong Kong: a preliminary description,' The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. EL48-EL53, 2012. [9] 李威倫, '海豚哨叫聲偵測之研究,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-73, 2018. [10] T.-H. Lin, L.-S. Chou, T. Akamatsu, H.-C. Chan, and C.-F. Chen, 'An automatic detection algorithm for extracting the representative frequency of cetacean tonal sounds,' The Journal of the Acoustical Society of America, vol. 134, no. 3, pp. 2477-2485, 2013. [11] D. Gillespie, M. Caillat, J. Gordon, and P. White, 'Automatic detection and classification of odontocete whistles,' The Journal of the Acoustical Society of America, vol. 134, no. 3, pp. 2427-2437, 2013. [12] E. L. Ferguson and B. G. Ferguson, 'High-precision acoustic localization of dolphin sonar click transmissions using a modified method of passive ranging by wavefront curvature,' The Journal of the Acoustical Society of America, vol. 146, no. 6, pp. 4790-4801, 2019. [13] G. A. Warner, S. E. Dosso, and D. E. Hannay, 'Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders,' The Journal of the Acoustical Society of America, vol. 141, no. 3, pp. 1921-1935, 2017. [14] V. Janik, S. Van Parijs, and P. Thompson, 'A two‐dimensional acoustic localization system for marine mammals,' Marine Mammal Science, vol. 16, no. 2, pp. 437-447, 2000. [15] S. M. Wiggins, K. E. Frasier, E. Elizabeth Henderson, and J. A. Hildebrand, 'Tracking dolphin whistles using an autonomous acoustic recorder array,' The Journal of the Acoustical Society of America, vol. 133, no. 6, pp. 3813-3818, 2013. [16] S. M. Wiggins, M. A. McDonald, and J. A. Hildebrand, 'Beaked whale and dolphin tracking using a multichannel autonomous acoustic recorder,' The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 156-163, 2012. [17] P. L. Tyack, M. Johnson, N. A. Soto, A. Sturlese, and P. T. Madsen, 'Extreme diving of beaked whales,' Journal of Experimental Biology, vol. 209, no. 21, pp. 4238-4253, 2006. [18] 謝駿、笪良龍、唐帥、范培勤,'基于 BELLHOP 模型的宽带信号波形预报',海洋科學, vol. 36,no. 11,pp. 62-66,2012. [19] M. J. Buckingham and E. M. Giddens, 'On the acoustic field in a Pekeris waveguide with attenuation in the bottom half-space,' The Journal of the Acoustical Society of America, vol. 119, no. 1, pp. 123-142, 2006. [20] Z. Zhu, S. Han, L. Qi, and H. Zhou, 'Mobile broadband waveform prediction based on BELLHOP model,' in Tenth International Conference on Digital Image Processing (ICDIP 2018), 2018, vol. 10806, p. 108066I: International Society for Optics and Photonics. [21] D. Gillespie et al., 'PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans,' Journal of the Acoustical Society of America, vol. 30, no. 5, pp. 54-62, 2008. [22] M. Porter, 'Ocean acoustics library,' Bellhop http://oalib. hlsresearch. com/, viewed April, vol. 10, 2008. [23] M. B. Porter, 'The bellhop manual and user’s guide: Preliminary draft,' Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, Tech. Rep, 2011. [24] SIYAVULA, Snell'S Law, Available: https://www.siyavula.com/read/science/grade-11/geometrical-optics/05-geometrical-optics-06 [25] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational ocean acoustics. Springer Science & Business Media, 2011. [26] V. Cizek, 'Discrete hilbert transform,' IEEE Transactions on Audio and Electroacoustics, vol. 18, no. 4, pp. 340-343, 1970. [27] C. S. Burrus and T. Parks, Convolution Algorithms. Citeseer, 1985. [28] R. Kaune, 'Accuracy studies for TDOA and TOA localization,' in 2012 15th International Conference on Information Fusion, 2012, pp. 408-415: IEEE. [29] 郭連翰, '中華白海豚哨叫聲與棲地夏季環境噪音之統計分析,' 中山大學海下科技暨應用海洋物理研究所學位論文, pp. 1-99, 2014. [30] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications. McGraw-Hill New York, 1986. [31] J. Allen, 'Short term spectral analysis, synthesis, and modification by discrete Fourier transform,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, no. 3, pp. 235-238, 1977. [32] P. Podder, T. Z. Khan, M. H. Khan, and M. M. Rahman, 'Comparative performance analysis of hamming, hanning and blackman window,' International Journal of Computer Applications, vol. 96, no. 18, 2014. [33] W.-Y. C. Wei-Lun Li, Chi-Fang Chen, 'Apply passive acoustic monitoring for Sousa chinensis,' presented at the 2nd OCEANOISE ASIA, Hakodate, Hokkaido, Japan, 2018. [34] W.-Y. C. Wei-Lun Li, Chi-Fang Chen, 'Dolphin Whistle Detection,' presented at the The 6th PACIFIC RIM UNDERWATER ACOUSTIC CONFERENCE, Taipei/Hualien, Taiwan, 2018. [35] W.-X. Zhou, 'Multifractal detrended cross-correlation analysis for two nonstationary signals,' Physical Review E, vol. 77, no. 6, p. 066211, 2008. [36] W. J. Teague, M. J. Carron, and P. J. Hogan, 'A comparison between the Generalized Digital Environmental Model and Levitus climatologies,' Journal of Geophysical Research: Oceans, vol. 95, no. C5, pp. 7167-7183, 1990. [37] J. Benesty, J. Chen, Y. Huang, and I. Cohen, 'Pearson correlation coefficient,' in Noise reduction in speech processing: Springer, 2009, pp. 1-4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65149 | - |
| dc.description.abstract | 基於2025年非核家園的目標與國際間減碳的承諾,台灣政府如火如荼的發展自主性的綠色能源產業。伴隨著台灣海峽地理環境的優勢,台灣西部海域乃非常優良之風場,政府也把握此良機,積極投入建設西部海域離岸風場。然而其比鄰中華白海豚重要棲息環境,打樁建造過程與之後的營運勢必造成對生態環境的影響,一套完整的鯨豚監測系統將是未來的發展重點。被動式聲學監測(Passive Acoustic Monitoring, PAM)即為廣泛被使用且效率極高之監測方法,不僅彌補目視法的缺陷,還可同時記錄海洋背景噪音與鯨豚叫聲,理解兩者的關係。
本研究於台中港北堤外海佈放四組水下麥克風監測站,為了測試此架構的效能,使用人造哨叫聲訊號模擬真實中華白海豚哨叫聲,經過臺大水聲實驗室自行開發之哨叫聲偵測器抓取訊號到達時間片段,最後計算訊號之到達時間差,完成(Time Difference of Arrival, TDOA)定位。由於整體PAM架構尺度達數公里,定位結果呈現出離監測站愈遠之聲源,定位效果愈差,平均定位誤差為105公尺。另一方面,為了瞭解訊號在水面下的傳遞,以增進水下麥克風站的監測效能,本研究使用Bellhop聲線追蹤模型模擬人造哨叫聲在水中的傳遞。Bellhop可以輸出多種結果,包含特徵聲線、傳輸損耗、到達時間與接收端時序列。透過將原始訊號與Bellhop輸出結果計算而得之脈衝響應進行摺積,即可得接收端訊號時序列。將模擬結果與台中港實驗資料進行比較,在波形與頻譜圖分析上,相關係數均大約為0.5,結果表明此模擬方法具備一定精度與準確性;此外,更可利用模擬訊號之到達時間回推出訊號源位置。整體而言,本研究未將來PAM關鍵技術提供了初步的參考方向。 | zh_TW |
| dc.description.abstract | For a nuclear-free homeland in 2025 and considering their international carbon reduction commitment, Taiwan’s government is developing an independent green industry. The development of offshore wind farms along the western coast currently is the government's main energy policy. Nevertheless, the wind farm is adjacent to the Chinese White Dolphin reservation zone. A passive acoustic monitoring system for cetaceans will be established as a development priority in the future wind farm operation. PAM (Passive Acoustic Monitoring) is used widely and its efficiency is much higher, so we use PAM to monitor the ocean background noise and the cetacean call. In addition to making up for the defects of the visual method, it also can understand the relationship between the two.
This study deployed four hydrophone stations near Taichung Harbor. To testify this system’s capability, this study used a human-made dolphin whistle signal to imitate a real dolphin’s call, and used a self-developed whistle detector to capture the signal. Moreover, we used the time difference of arrivals (TDOA) method to compute the localization of signal sources. This TDOA experiment was conducted near Taichung Harbor. The result showed that the average of the positioning errors was 150m due to the long range hydrophone array. On the other hand, to improve this algorithm, it’s important to understand the transmission of the whistle signal. This study also used Bellhop ray tracing program to simulate the transmission of the human-made whistle signal. Bellhop can produce several useful outputs including eigenrays, transmission loss, arrival time and received time series. By convolving the source signal with the Bellhop output impulse response function, we can produce a receiver time series. After comparing the simulation result with the Taichung Harbor experiment result, it shows that this simulate method possess certain accuracy and similarity, due to the 0.5 correlation coefficient on waveform and spectrum. And we can also derive the source signal location from the arrival time produced by the Bellhop. Over all, this study provides initial reference directions for key technologies of the PAM used in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:27:10Z (GMT). No. of bitstreams: 1 ntu-109-R06525012-1.pdf: 12701930 bytes, checksum: 4242dd3048f408dd0904daf52ec108dd (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 緒論 13 1.1 研究動機與目的 13 1.2 文獻回顧 14 1.2.1 中華白海豚 14 1.2.2 被動式聲學監測 18 1.2.3 Bellhop聲線追蹤模型 23 1.3 論文架構 27 第二章 PAM偵測程式比較 28 2.1 PAM技術回顧 28 2.2 NTU_PAM介紹 28 2.2.1 NTU_PAM 28 2.2.2 Whistle Detector 29 2.2.3 Click Detector 31 2.3 PAMGUARD介紹 33 2.3.1 PAMGUARD基本介紹 33 2.3.2 Whistle and Moan Detector 34 2.3.3 Click Detector 35 2.4 偵測效能比較 37 2.4.1 Whistle偵測比較 37 2.4.2 Click偵測比較 38 2.5 總結 39 第三章 研究方法 40 3.1 時序列模擬 40 3.1.1 Bellhop聲線追蹤模型 40 3.1.2 司乃耳定律 (Snell’s Law) 42 3.1.3 聲線追蹤 (Ray Tracing) 43 3.1.4 基於聲線法之時域寬帶模型 44 3.1.5 摺積定理 (Convolution Theorem) 47 3.2 到達時間差定位法 (Time Different of Arrival, TDOA) 48 第四章 TDOA定位實驗 49 4.1 實驗配置 49 4.2 實驗資料分析方法 54 4.2.1 分析流程 54 4.2.2 短時距傅立業轉換 (Short-Time Fourier Transform) 55 4.2.3 哨叫聲偵測器 (Whistle Detector) 56 4.2.4 交互相關函數法 (Cross Correlation) 57 4.3 實驗結果 58 第五章 哨叫聲訊號時序列模擬 66 5.1 模擬設定 67 5.2 模擬流程 71 5.3 模擬結果 72 第六章 模擬與實驗結果比較 77 6.1 接收端訊號比較 77 6.2 TDOA定位比較 80 第七章 結論與未來發展建議 85 7.1 結論 85 7.2 未來發展建議 85 7.3 未來展望規劃 86 參考文獻 88 附錄A Bellhop模擬結果 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 被動式聲學監測(PAM) | zh_TW |
| dc.subject | 中華白海豚 | zh_TW |
| dc.subject | 到達時間差定位法(TDOA) | zh_TW |
| dc.subject | Bellhop聲線追蹤模型 | zh_TW |
| dc.subject | Bellhop | en |
| dc.subject | passive acoustic monitoring (PAM) | en |
| dc.subject | Chinese White Dolphin | en |
| dc.subject | time difference of arrival (TDOA) | en |
| dc.title | 中華白海豚哨叫聲偵測、模擬與定位之研究 | zh_TW |
| dc.title | Study on the Detection, Simulation and Localization of Chinese White Dolphin’s Whistle Signal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭巧明,王昭男,周蓮香,張元櫻 | |
| dc.subject.keyword | 中華白海豚,被動式聲學監測(PAM),到達時間差定位法(TDOA),Bellhop聲線追蹤模型, | zh_TW |
| dc.subject.keyword | Chinese White Dolphin,passive acoustic monitoring (PAM),time difference of arrival (TDOA),Bellhop, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202000545 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 12.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
