Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chung-Chih Wu)
dc.contributor.authorChun-Yu Wangen
dc.contributor.author王俊右zh_TW
dc.date.accessioned2021-06-16T23:26:42Z-
dc.date.available2020-03-03
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-21
dc.identifier.citation[1] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals,” The Journal of Chemical Physics, vol. 38, no. 8. pp. 2042–2043, Dec. 1963.
[2] W. Helfrich and W. G. Schneider, “Recombination Radiation in Anthracene Crystals,” Physical Review Letters, vol. 14, no. 7, pp. 229–231, Feb. 1965.
[3] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913–915, Jul. 1987.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, Oct. 1990.
[5] J. Kido, M. Kimura, and K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science, vol. 267, no. 5202, pp. 1332–1334, Mar. 1995.
[6] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151–154, Sept. 1998.
[7] M. Koden, “OLED Displays and Lighting,” John Wiley & Sons, vol. 1, no. 2-3, pp. 13–21, Nov. 2016.
[8] C. H. Chang, H. C. Cheng, Y. J. Lu, K. C. Tien, H. W. Lin, C. L. Lin, C. J. Yang, and C. C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Organic Electronics, vol. 11, no. 2, pp. 247–254, Feb. 2010.
[9] M. A. Baldo, M. E. Thompson, and S. R. Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” Nature, vol. 403, no. 6771, pp. 750–753, Feb. 2000.
[10] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234–238, Dec. 2012.
[11] J. H. Kim, J. H. Yun, and J. Y. Lee, “Recent Progress of Highly Efficient Red and Near-Infrared Thermally Activated Delayed Fluorescent Emitters,” Advanced Optical Materials, vol. 6, no. 18, p. 1800255, Jun. 2018.
[12] T. A. Lin, T. Chatterjee, W. L, Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid,” Advanced Materials, vol. 28, no. 32, pp. 6976–6983, Jun. 2016.
[13] D. H. Ahn, S. W. Kim, H. Lee, I, J. Ko, D. Karthik, J. Y. Lee, and J. H. Kwon, “Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors,” Nature Photonics, vol. 13, pp. 540–546, Apr. 2019.
[14] D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S. H. Hwang, and J. Y. Lee, “Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes,” American Chemical Society Applied Materials & Interfaces, vol. 7, no. 18, pp. 9625–9629, Apr. 2015.
[15] T. L. Wu, M. J. Huang, C. C. Lin, P. Y. Huang, T. Y. Chou, R. W. Chen-Cheng, H. W. Lin, R. S. Liu, and C. H. Cheng, “Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off,” Nature Photonics, vol. 12, pp. 235-240, Mar. 2018.
[16] D. Yokoyama, “Molecular orientation in small-molecule organic light-emitting diodes,” Journal of Materials Chemistry, vol. 21, no. 48, pp. 19187–19202, Oct. 2011.
[17] J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Applied Physics Letters, vol. 96, no. 7, Feb. 2010.
[18] T. D. Schmidt, T. Lampe, M. R. Daniel Sylvinson, P. I. Djurovich, M. E. Thompson, and W. Brütting, “Emitter Orientation as a Key Parameter in Organic Light-Emitting Diodes,” Physical Review Applied, vol. 8, no. 3, Sep. 2017.
[19] K. H. Kim and J. J. Kim, “Origin and Control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs,” Advanced Materials, vol. 30, no. 42, Apr. 2018.
[20] D. H. Kim, K. Inada, L. Zhao, T. Komino, N. Matsumoto, J. C. Ribierre, and C. Adachi, “Organic light emitting diodes with horizontally oriented thermally activated delayed fluorescence emitters,” Journal of Materials Chemistry C, vol. 5, no. 5, pp. 1216–1223, Jan. 2017.
[21] P. L. Dos Santos, J. S. Ward, M. R. Bryce, and A. P. Monkman, “Using Guest-Host Interactions To Optimize the Efficiency of TADF OLEDs,” The Journal of Physical Chemistry Letters, vol. 7, no. 17, pp. 3341–3346, Aug. 2016.
[22] Y. Im, M. Kim, Y. J. Cho, J. A. Seo, K. S. Yook, and J. Y. Lee, “Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters,” American Chemical Society Chemistry of Materials, vol. 29, no. 5, pp. 1946–1963, Feb. 2017.
[23] Y. Olivier, M. Moral, L. Muccioli, and J. C. Sancho-García, “Dynamic nature of excited states of donor-acceptor TADF materials for OLEDs: how theory can reveal structure-property relationships,” Journal of Materials Chemistry C, vol. 5, no. 23, pp. 5718–5729, Jun. 2017.
[24] M. Y. Wong and E. Zysman-Colman, “Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes,” Advanced Materials, vol. 29, no. 22, p. 1605444, Jun. 2017.
[25] K. A. Neyts, “Simulation of light emission from thin-film microcavities,” Journal of the Optical Society of America A, vol. 15, no. 4, p. 962, Apr. 1998.
[26] C. L. Lin, H. C. Chang, K. C. Tien, and C. C. Wu, “Influences of resonant wavelengths on performances of microcavity organic light-emitting devices,” Applied Physics Letters, vol. 90, no. 7, Feb. 2007.
[27] C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Applied Physics Letters, vol. 88, no. 8, Feb. 2006.
[28] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, “Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices,” Journal of Materials Chemistry, vol. 22, no. 31, pp. 16114–16120, Aug. 2012.
[29] T. Zhang, Y. Liang, J. Cheng, and J. Li, “A CBP derivative as bipolar host for performance enhancement in phosphorescent organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 4, pp. 757–764, Nov. 2012.
[30] J. Lee, N. Aizawa, M. Numata, C. Adachi, and T. Yasuda, “Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence,” Advanced Materials, vol. 29, no. 4, p. 1604856, Nov. 2016.
[31] W. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu, and C. Yang, “Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids,” Advanced Materials, vol. 30, no. 5, p. 1704961, Dec. 2017.
[32] S. K. Jeon, H. L. Lee, K. S. Yook, and J. Y. Lee, “Recent Progress of the Lifetime of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescent Material,” Advanced Materials, vol. 31, p. 1803524, Aug. 2019.
[33] K. C. Pan, S. W. Li, Y. Y. Ho, Y. J. Shiu, W. L. Tsai, M. Jiao, W. K. Lee, C. C. Wu, C. L. Chung, T. Chatterjee, Y. S. Li, K. T. Wong, H. C. Hu, C. C. Chen, and M. T. Lee, “Efficient and Tunable Thermally Activated Delayed Fluorescence Emitters Having Orientation-Adjustable CN-Substituted Pyridine and Pyrimidine Acceptor Units,” Advanced Functional Materials, vol. 26, no. 42, pp. 7560–7571, Sept. 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65138-
dc.description.abstract近年來,有機發光二極體(OLED)已成為顯示和照明應用的重要技術。隨著OLED技術的不斷發展,器件效率,器件可靠性和製造成本等參數對於該領域的研究至關重要。在本論文中,我們通過分析光物理和電致發光特性以及利用這些材料的器件架構,深入研究了基於熱活化型延遲螢光(TADF)的新型有機發光材料。
在本論文的第一部分,我們研究了基於Donor-Acceptor(D-A)分子結構和有電子受體喹喔啉部分的TADF材料的光物理和電致發光性質。我們的研究表明它們是高效的TADF材料。值得注意的是,當與二氫吖啶供體單元配對時,該材料同時表現出100%的光致發光量子產率(PLQY)和水平取向的發光偶極子。它們可用於製造高效的橙紅色OLED,外部量子效率(EQE)高達23.2%。
在本論文的第二部分,我們繼續研究基於吖啶供體單元和不同受體單方的TADF材料的光物理和電致發光特性,特別是9,9-dimethyl-9,10-dihydroacridine (DMAC)和10H-spiro[acridine-9,9'-fluorene(SpiroAc)。我們的研究表明,這些材料還可以具有明顯高的PLQY和水平取向的發射偶極子。它們可用於製造高效的綠色OLED,錄光元件EQE可高達33.7%,藍色OLED的EQE可高達14%。
zh_TW
dc.description.abstractIn recent years, organic light-emitting diodes (OLEDs) have become a significant technology for display and lighting applications. As the OLED technology continues to reach more prominence, parameters such as device efficiency, device reliability, and manufacturing cost are critical to consider in this research field. In this thesis, we focused on the investigation of novel organic light-emitting materials based on thermally activated delayed fluorescence (TADF) through analysis of photophysical and electroluminescence characteristics.
In the first section of this thesis, we investigated photophysical and electroluminescent properties of organic materials based on a donor-acceptor (D-A) molecular architecture with an electron-accepting quinoxaline moiety. Our studies indicate they are highly efficient TADF materials. Notably, when paired with a dihydroacidine donor unit, the material simultaneously exhibits unitary photoluminescence quantum yield (PLQY) and horizontally oriented emitting dipoles. They can be utilized to fabricate highly efficient orange-red OLEDs with an external quantum efficiency (EQE) up to 23.2%.
In the second section of this thesis, we continued our investigation of photophysical and electroluminescent characteristics for TADF materials based on acridine donor units, specifically 9,9-dimethyl-9,10-dihydroacridine (DMAC) and 10H-spiro[acridine-9,9'-fluorene (SpiroAc), and different acceptor units. Our studies indicate that these materials can also possess noticeably high PLQY and horizontally oriented emitting dipoles. Therefore, they can be used to fabricate efficient green OLEDs with EQEs up to 33.7% and blue OLEDs with EQEs up to 14%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:26:42Z (GMT). No. of bitstreams: 1
ntu-109-R06943157-1.pdf: 3642908 bytes, checksum: a1c9ecc6c14e19494f02bc9544d41bf3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝………………………………………………………………………………………….ii
中文摘要…………………………………………………………………………………....iv
ABSTRACT………………………………………………………………………………...v
TABLE OF CONTENTS………………………………………………………………....vii
LIST OF TABLES………………………………………………………………………...ix
LIST OF FIGURES………………………………………………………………………..x
Chapter 1 Introduction………………………………………………………………...1
1.1 Overview of Organic Light-Emitting Devices……………………………………1
1.2 Thermally Activated Delayed Fluorescent Materials for OLEDs………………4
1.3 Thesis Organization and Motivation…………….…………….………………….7
Figures of Chapter 1…………….…………….…………….…………….………..8-10
Chapter 2 Photophysical and Device Studies of Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Based on Quinoxaline Acceptor Moieties
2.1 Introduction…………….…………….…………….…………….……………….11
2.2 Methods…………….…………….…………….…………….…………….……...13
2.2.1 Materials…………….…………….…………….…………….…………....13
2.2.2 Photophysical Characteristics…………….…………….………………….13
2.2.3 Emitting Dipole Orientation…………….…………….…………………....14
2.2.4 Device Fabrication and Characterization…………….…………………….15
2.2.5 Optical Simulation…………….…………….…………….………………..16
2.3 Results and Discussion…………….…………….…………….………………….18
2.3.1 Photophysical Characteristics…………….…………….………………….18
2.3.2 Emitting Dipole Orientation……...…………….…………….…………….20
2.3.3 Electroluminescent Characteristics …………….…….…………………....21
2.3.4 Discussion of Optical Simulation…………….…………………………….22
2.4 Summary…………….…………….…………….…………….…………………..25
Tables of Chapter 2…………….…………….…………….…………….…………...26
Figures of Chapter 2…………….…………….…………….……………….……….33
Chapter 3 Investigating Photophysical and Electroluminescent Properties of Efficient Dimethylacridine-Based and Spiroacridine-Based TADF Emitters
3.1 Introduction…………….…………….…………….…………….……………….47
3.2 Methods…………….…………….…………….…………….…………….……...49
3.2.1 Materials…………….…………….…………….…………….…………....49
3.2.2 Photophysical Characteristics…………….…………….………………….49
3.2.3 Emitting Dipole Orientation…………….…………….……………………50
3.2.4 Device Fabrication and Characterization…………….…………………….51
3.2.5 Optical Simulation…………….…………….…………….………………..52
3.3 Results and Discussion…………….…………….…………….…………….……54
3.3.1 Photophysical Characteristics…………….………………………………..54
3.3.2 Emitting Dipole Orientation………………………....…………….……….58
3.3.3 Electroluminescent Characteristics……………..…….…………….……...58
3.3.4 Discussion of Optical Simulation…………….…………….………………60
3.4 Summary…………….…………….…………….…………….…………………..63
Tables of Chapter 3…………….…………….…………….…………….…………...64
Figures of Chapter 3…………….…………….…………….…………….………….68
Chapter 4 Summary…………….…………….…………….………………………...83
References…………….…………….…………….…………….…………………………85
dc.language.isozh-TW
dc.subject水平取向發射偶極子zh_TW
dc.subject外量子效率zh_TW
dc.subject有機發光元件zh_TW
dc.subject熱活化型延遲螢光zh_TW
dc.subjectthermally activated delayed fluorescenceen
dc.subjectOLEDsen
dc.subjectEQEen
dc.subjecthorizontally oriented emitting dipoleen
dc.title新型熱活化延遲螢光發光體的光物理性質和電致發光研究zh_TW
dc.titleInvestigation on Photophysical Properties and Electroluminescence of Novel Thermally Activated Delayed Fluorescent Emittersen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee汪根欉(Ken-Tsung Wong),陳俐吟(Li-Yin Chen),蔡志宏(Chih-Hung Tsai)
dc.subject.keyword有機發光元件,熱活化型延遲螢光,外量子效率,水平取向發射偶極子,zh_TW
dc.subject.keywordOLEDs,thermally activated delayed fluorescence,EQE,horizontally oriented emitting dipole,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202000549
dc.rights.note有償授權
dc.date.accepted2020-02-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved