Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞
dc.contributor.authorChien-Liang Chenen
dc.contributor.author陳建良zh_TW
dc.date.accessioned2021-06-16T23:26:24Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citation[1] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat Mater, vol. 6, no. 3, pp.
183–191, Mar. 2007. [Online]. Available: http://dx.doi.org/10.1038/nmat1849 vi, 6
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin
carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [Online]. Available:
http://www.sciencemag.org/content/306/5696/666.abstract 5
[3] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and
A. K. Geim., “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci., vol. 102, p. 10451,
2005. [Online]. Available: http://www.pnas.org/content/102/30/10451 5
[4] R. E. Peierls, “Bemerkungen ‥uber Umwandlungstemperaturen,” Helv. Phys. Acta, vol. 7,
p. 81, 1934. 5
[5] N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., vol. 176, pp. 250–254,
Dec 1968. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRev.176.250 5
[6] G. Grosso and G. P. Parravicini, Solid States Physics. Academic Press, New York, 2000. 7
[7] M. Wilson, “Electrons in atomically thin carbon sheets behave like mass-
less particles,” Phys. Today, vol. 59, no. 1, p. 21, 2006. [Online]. Available:
http://www.physicstoday.org/resource/1/phtoad/v59/i1/p21 s1 9
[8] J. J. Sakurai, Advanced Quantum Mechanics. Addison-Wesley, New York, 1967. 10
[9] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems.
Springer, Berlin, 2003. 10, 11, 18, 58, 60
[10] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an
inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett., vol. 78, pp. 1335–
1338, Feb 1997. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.78.1335
11, 27
[11] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Ap-
plied Physics Letters, vol. 56, no. 7, pp. 665–667, 1990. [Online]. Available:
http://link.aip.org/link/?APL/56/665/1 11
[12] A. Varykhalov, J. S’anchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin,
D. Marchenko, and O. Rader, “Electronic and magnetic properties of quasifreestanding
graphene on Ni,” Phys. Rev. Lett., vol. 101, p. 157601, Oct 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.101.157601 12, 15, 48
[13] Y. S. Dedkov, M. Fonin, U. R‥udiger, and C. Laubschat, “Rashba effect in the
graphene/Ni(111) system,” Phys. Rev. Lett., vol. 100, p. 107602, Mar 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.100.107602 12, 15, 48
[14] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin
Hall effect in semiconductors,” Science, vol. 306, no. 5703, pp. 1910–1913, 2004. [Online].
Available: http://www.sciencemag.org/content/306/5703/1910.abstract 12, 18, 39, 48
[15] V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom,
“Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional
electron gases,” Nat Phys, vol. 1, no. 1, pp. 31–35, Oct. 2005. [Online]. Available:
http://dx.doi.org/10.1038/nphys009 12, 39, 48
[16] S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall
effect,” Nature, vol. 442, no. 7099, pp. 176–179, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1038/nature04937 12, 39, 48
[17] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta,
and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au
devices,” Nat Mater, vol. 7, no. 2, pp. 125–129, Feb. 2008. [Online]. Available:
http://dx.doi.org/10.1038/nmat2098 12, 39, 48
[18] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal
intrinsic spin Hall effect,” Phys. Rev. Lett., vol. 92, p. 126603, Mar 2004. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.92.126603 12, 18, 39, 48
[19] S. Murakami, N. Nagaosa, and S.-C. Zhang, “Dissipationless quantum spin current at
room temperature,” Science, vol. 301, no. 5638, pp. 1348–1351, 2003. [Online]. Available:
http://www.sciencemag.org/content/301/5638/1348.abstract 12, 18, 39, 48
[20] G. Y. Guo, Y. Yao, and Q. Niu, “Ab initio calculation of the intrinsic spin hall effect
in semiconductors,” Phys. Rev. Lett., vol. 94, p. 226601, Jun 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.94.226601 12, 39
[21] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, “Intrinsic spin hall effect in platinum:
First-principles calculations,” Phys. Rev. Lett., vol. 100, p. 096401, Mar 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.100.096401 12, 39
[22] M. I. D’yakonov and V. I. Perel’, “Possibility of orientating electron spins
with current,” JETP Lett., vol. 13, p. 467, 1971. [Online]. Available:
http://www.jetpletters.ac.ru/ps/1587/article 24366.shtml 13, 18, 39, 48
[23] M. Dyakonov and V. Perel, “Current-induced spin orientation of electrons in semicon-
ductors,” Physics Letters A, vol. 35, no. 6, pp. 459 – 460, 1971. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0375960171901964 13
[24] J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett., vol. 83, pp. 1834–1837, Aug 1999.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.83.1834 14, 18, 19, 39, 48
[25] C. Br‥une, A. Roth, E. G. Novik, M. Konig, H. Buhmann, E. M. Hankiewicz, W. Hanke,
J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in
HgTe nanostructures,” Nat Phys, vol. 6, no. 6, pp. 448–454, Jun. 2010. [Online]. Available:
http://dx.doi.org/10.1038/nphys1655 14, 15, 39, 48, 58, 60, 63
[26] T. Jungwirth, J. Wunderlich, and K. Olejnik, “Spin hall effect devices,” Nat Mater, vol. 11,
no. 5, pp. 382–390, May 2012. [Online]. Available: http://dx.doi.org/10.1038/nmat3279 14
[27] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,”
Phys. Rev. Lett., vol. 95, p. 226801, Nov 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.95.226801 14
[28] D. A. Abanin, R. V. Gorbachev, K. S. Novoselov, A. K. Geim, and
L. S. Levitov, “Giant spin-Hall effect induced by the Zeeman interaction in
graphene,” Phys. Rev. Lett., vol. 107, p. 096601, Aug 2011. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.107.096601 14, 60, 61, 73
[29] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observa-
tion of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor
system,” Phys. Rev. Lett., vol. 94, p. 047204, Feb 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.94.047204 15, 18, 19, 39, 48
[30] D. A. Abanin, S. V. Morozov, L. A. Ponomarenko, R. V. Gorbachev, A. S. Mayorov, M. I.
Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov, L. S. Levitov, and A. K. Geim,
“Giant nonlocality near the Dirac point in graphene,” Science, vol. 332, no. 6027, pp. 328–
330, 2011. [Online]. Available: http://www.sciencemag.org/content/332/6027/328.abstract
15, 58, 60, 61, 68, 69, 71, 73, 74, 75, 77
[31] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln’ar, M. L.
Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics
vision for the future,” Science, vol. 294, no. 5546, pp. 1488–1495, 2001. [Online]. Available:
http://www.sciencemag.org/content/294/5546/1488.abstract 18
[32] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin
polarization in strained semiconductors,” Phys. Rev. Lett., vol. 93, p. 176601, Oct 2004.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.93.176601 18, 19
[33] M.-H. Liu, S.-H. Chen, and C.-R. Chang, “Current-induced spin polarization in spin-orbit-
coupled electron systems,” Phys. Rev. B, vol. 78, p. 165316, Oct 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.78.165316 18, 19, 35
[34] B. K. Nikoli’c, S. Souma, L. P. Zˆarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation
in ballistic semiconductor nanostructures,” Phys. Rev. Lett., vol. 95, p. 046601, Jul 2005.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.95.046601 18, 20, 40
[35] A. G. Mal’shukov, L. Y. Wang, and C. S. Chu, “Spin-Hall interface resistance in terms of
Landauer-type spin dipoles,” Phys. Rev. B, vol. 75, p. 085315, Feb 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.75.085315 18, 36, 40
[36] E. I. Rashba, “Spin currents in thermodynamic equilibrium: The challenge of discerning
transport currents,” Phys. Rev. B, vol. 68, p. 241315, Dec 2003. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.68.241315 19
[37] B. K. Nikoli’c, L. P. Zˆarbo, and S. Souma, “Imaging mesoscopic spin Hall flow: Spatial
distribution of local spin currents and spin densities in and out of multiterminal spin-orbit
coupled semiconductor nanostructures,” Phys. Rev. B, vol. 73, p. 075303, Feb 2006.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.73.075303 19, 20, 24, 25, 26,
27, 28, 30, 35, 41, 42
[38] V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii,
M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nan-
otubes, nanohelices and their arrays,” Physica E: Low-dimensional Systems and
Nanostructures, vol. 6, no. 1-4, pp. 828 – 831, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1386947799002490 19
[39] A. Vorob’ev, V. Prinz, Y. Yukecheva, and A. Toropov, “Magnetotransport properties
of two-dimensional electron gas on cylindrical surface,” Physica E: Low-dimensional
Systems and Nanostructures, vol. 23, pp. 171 – 176, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1386947704001092 19
[40] S. Mendach, O. Schumacher, C. Heyn, S. Schnull, H. Welsch, and W. Hansen, “Preparation
of curved two-dimensional electron systems in InGaAs/GaAs-microtubes,” Physica E:
Low-dimensional Systems and Nanostructures, vol. 23, pp. 274 – 279, 2004. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1386947704001341 19
[41] N. Shaji, H. Qin, R. H. Blick, L. J. Klein, C. Deneke, and O. G. Schmidt, “Magnetotransport
through two dimensional electron gas in a tubular geometry,” Applied Physics Letters, vol. 90,
no. 4, p. 042101, 2007. [Online]. Available: http://link.aip.org/link/?APL/90/042101/1 19
[42] K.-J. Friedland, R. Hey, H. Kostial, A. Riedel, and K. H. Ploog, “Measurements
of ballistic transport at nonuniform magnetic fields in cross junctions of a curved
two-dimensional electron gas,” Phys. Rev. B, vol. 75, p. 045347, Jan 2007. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.75.045347 19
[43] M. Trushin and J. Schliemann, “Spin dynamics in rolled-up two-dimensional electron
gases,” New Journal of Physics, vol. 9, no. 9, p. 346, 2007. [Online]. Available:
http://stacks.iop.org/1367-2630/9/i=9/a=346 19, 21
[44] T. Ando, “Spin-orbit interaction in carbon nanotubes,” Journal of the Physical
Society of Japan, vol. 69, no. 6, pp. 1757–1763, 2000. [Online]. Available:
http://jpsj.ipap.jp/link?JPSJ/69/1757/ 19
[45] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, and C. Schonenberger,
“Electric field control of spin transport,” Nat Phys, vol. 1, no. 2, pp. 99–102, Nov. 2005.
[Online]. Available: http://dx.doi.org/10.1038/nphys149 19
[46] A. D. Martino and R. Egger, “Rashba spin-orbit coupling and spin precession in carbon
nanotubes,” Journal of Physics: Condensed Matter, vol. 17, no. 36, p. 5523, 2005. [Online].
Available: http://stacks.iop.org/0953-8984/17/i=36/a=008 19
[47] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, “Coupling of spin and orbital motion
of electrons in carbon nanotubes,” Nature, vol. 452, no. 7186, pp. 448–452, Mar. 2008.
[Online]. Available: http://dx.doi.org/10.1038/nature06822 19
[48] S.-H. Chen, M.-H. Liu, and C.-R. Chang, “Local spin density in a two-dimensional electron
gas with a hexagonal boundary,” Phys. Rev. B, vol. 76, p. 075322, Aug 2007. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.76.075322 19
[49] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cam-
bridge, 1995. 20, 21, 26, 41, 42, 44, 54
[50] E. Rashba, “Cyclotron and combinational resonance in a magnetic field perpendicular to the
plane of the loop,” Sov. Phys. Solid. State, vol. 2, p. 1109, 1960. 21, 39, 48
[51] Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted
spectral degeneracy,” JETP Lett., vol. 39, p. 78, 1984. [Online]. Available:
http://www.jetpletters.ac.ru/ps/1264/article 19121.shtml 21
[52] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall
effect,” Phys. Rev. Lett., vol. 95, p. 146802, Sep 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.95.146802 21
[53] M.-H. Liu, G. Bihlmayer, S. Bl‥ugel, and C.-R. Chang, “Intrinsic spin-Hall accumulation in
honeycomb lattices: Band structure effects,” Phys. Rev. B, vol. 76, p. 121301, Sep 2007.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.76.121301 21
[54] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP, vol. 20,
p. 1018, 1965. 24, 41
[55] R. van Leeuwen, N. E. Dahlen, G. Stefanucci, C.-O. Almbladh, and U. von Barth,
“Introduction to the Keldysh formalism,” Lectures Notes in Physics, vol. 706, p. 33, 2006.
[Online]. Available: http://www.springerlink.com/content/d40076h8251508l7/?MUD=MP
24, 41
[56] J. Shi, P. Zhang, D. Xiao, and Q. Niu, “Proper definition of spin current in spin-orbit
coupled systems,” Phys. Rev. Lett., vol. 96, p. 076604, Feb 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.96.076604 25
[57] S. Murakami, N. Nagosa, and S.-C. Zhang, “SU(2) non-Abelian holonomy and
dissipationless spin current in semiconductors,” Phys. Rev. B, vol. 69, p. 235206, Jun 2004.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.69.235206 25
[58] Q.-f. Sun, X. C. Xie, and J. Wang, “Persistent spin current in nanodevices and definition
of the spin current,” Phys. Rev. B, vol. 77, p. 035327, Jan 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.77.035327 26, 30
[59] E. B. Sonin, “Proposal for measuring mechanically equilibrium spin currents in the
Rashba medium,” Phys. Rev. Lett., vol. 99, p. 266602, Dec 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.99.266602 32
[60] F. Liang, J. Wang, Y. H. Yang, and K. S. Chan, “Detection of spin current by electron
spin resonance,” Journal of Applied Physics, vol. 104, no. 11, p. 113701, 2008. [Online].
Available: http://link.aip.org/link/?JAP/104/113701/1 32
[61] J. Li, L. Hu, and S.-Q. Shen, “Spin-resolved Hall effect driven by spin-orbit
coupling,” Phys. Rev. B, vol. 71, p. 241305, Jun 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.71.241305 39, 48
[62] G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,”
Phys. Rev., vol. 100, pp. 580–586, Oct 1955. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRev.100.580 39, 48
[63] M.-H. Liu and C.-R. Chang, “Anomalous spin Hall effects in dresselhaus (110)
quantum wells,” Phys. Rev. B, vol. 82, p. 155327, Oct 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.82.155327 39
[64] S.-H. Chen, M.-H. Liu, K.-W. Chen, and C.-R. Chang, “Spin accumulation os-
cillation and current vortex in the Landauer setup with locally applied biases,”
Journal of Applied Physics, vol. 103, no. 7, p. 07B721, 2008. [Online]. Available:
http://link.aip.org/link/?JAP/103/07B721/1 40
[65] S.-H. Chen, I. Klik, and C.-R. Chang, “Spin-Hall effect in a finite two-dimensional electron
gas sample with a central defect,” Journal of Applied Physics, vol. 105, no. 7, p. 07E908,
2009. [Online]. Available: http://link.aip.org/link/?JAP/105/07E908/1 40
[66] G.-Y. Guo, S. Maekawa, and N. Nagaosa, “Enhanced spin Hall effect by resonant skew
scattering in the orbital-dependent Kondo effect,” Phys. Rev. Lett., vol. 102, p. 036401, Jan
2009. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.102.036401 40
[67] T. Yokoyama and M. Eto, “Enhanced spin Hall effect by tuning antidot potential: Proposal
for a spin filter,” Phys. Rev. B, vol. 80, p. 125311, Sep 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.80.125311 40
[68] D. S’anchez and L. Serra, “Fano-Rashba effect in a quantum wire,” Phys. Rev. B, vol. 74, p.
153313, Oct 2006. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.74.153313
44
[69] Y. Zhang, J.-P. Hu, B. A. Bernevig, X. R. Wang, X. C. Xie, and W. M. Liu, “Quantum
blockade and loop currents in graphene with topological defects,” Phys. Rev. B, vol. 78, p.
155413, Oct 2008. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.78.155413
44
[70] J.-Y. Yan, P. Zhang, B. Sun, H.-Z. Lu, Z. Wang, S. Duan, and X.-G. Zhao,
“Quantum blockade and loop current induced by a single lattice defect in graphene
nanoribbons,” Phys. Rev. B, vol. 79, p. 115403, Mar 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.79.115403 44
[71] B. K. Nikoli’c, L. P. Zˆarbo, and S. Welack, “Transverse spin-orbit force in the spin Hall effect
in ballistic semiconductor wires,” Phys. Rev. B, vol. 72, p. 075335, Aug 2005. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.72.075335 48, 60, 71
[72] C.-L. Chen, Y.-H. Su, K.-W. Chen, and C.-R. Chang, “Enhanced spin Hall accumulation
with two charge current vortices in the Landauer setup with four terminals,”
Journal of Applied Physics, vol. 109, no. 7, p. 07C715, 2011. [Online]. Available:
http://link.aip.org/link/?JAP/109/07C715/1 48
[73] E. I. Rashba, “Graphene with structure-induced spin-orbit coupling: Spin-polarized states,
spin zero modes, and quantum Hall effect,” Phys. Rev. B, vol. 79, p. 161409, Apr 2009.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.79.161409 48
[74] M.-H. Liu and C.-R. Chang, “Upstanding Rashba spin in honeycomb lattices: Electrically
reversible surface spin polarization,” Phys. Rev. B, vol. 80, p. 241304, Dec 2009. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.80.241304 48
[75] W. Ren, Z. Qiao, J. Wang, Q. Sun, and H. Guo, “Universal spin-Hall conductance
fluctuations in two dimensions,” Phys. Rev. Lett., vol. 97, p. 066603, Aug 2006. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.97.066603 54
[76] A. K. Geim, “Graphene: Status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534,
2009. [Online]. Available: http://www.sciencemag.org/content/324/5934/1530.abstract 58
[77] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,”
Rev. Mod. Phys., vol. 83, pp. 1057–1110, Oct 2011. [Online]. Available:
http://link.aps.org/doi/10.1103/RevModPhys.83.1057 58, 63, 71
[78] B. K. Nikoli’c, L. P. Zˆarbo, and S. Souma, “Mesoscopic spin Hall effect in multiprobe
ballistic spin-orbit-coupled semiconductor bridges,” Phys. Rev. B, vol. 72, p. 075361, Aug
2005. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.72.075361 58, 60, 71
[79] A. Roth, C. Br‥une, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang,
“Nonlocal transport in the quantum spin Hall state,” Science, vol. 325, no. 5938, pp. 294–
297, 2009. [Online]. Available: http://www.sciencemag.org/content/325/5938/294.abstract
58, 63
[80] E. M. Hankiewicz, L. W. Molenkamp, T. Jungwirth, and J. Sinova, “Mani-
festation of the spin Hall effect through charge-transport in the mesoscopic
regime,” Phys. Rev. B, vol. 70, p. 241301, Dec 2004. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.70.241301 58
[81] C. Ertler, S. Konschuh, M. Gmitra, and J. Fabian, “Electron spin relaxation in graphene:
The role of the substrate,” Phys. Rev. B, vol. 80, p. 041405, Jul 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.80.041405 58
[82] A. H. Castro Neto and F. Guinea, “Impurity-induced spin-orbit coupling in
graphene,” Phys. Rev. Lett., vol. 103, p. 026804, Jul 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.103.026804 58
[83] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors.
Springer, Berlin, 2007. 61, 64, 65, 67, 69
[84] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting
electron region,” Phys. Rev. Lett., vol. 68, pp. 2512–2515, Apr 1992. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.68.2512 61, 65
[85] R. Golizadeh-Mojarad and S. Datta, “Nonequilibrium Green’s function based models for
dephasing in quantum transport,” Phys. Rev. B, vol. 75, p. 081301, Feb 2007. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.75.081301 61, 64, 65, 68, 71
[86] M. B‥uttiker, “Four-terminal phase-coherent conductance,” Phys. Rev. Lett., vol. 57, pp. 1761–
1764, Oct 1986. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.57.1761
61, 63
[87] J. W. Kłos and I. V. Zozoulenko, “Effect of short- and long-range scattering
on the conductivity of graphene: Boltzmann approach vs tight-binding cal-
culations,” Phys. Rev. B, vol. 82, p. 081414, Aug 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.82.081414 61, 75, 77
[88] A. Ferreira, J. Viana-Gomes, J. Nilsson, E. R. Mucciolo, N. M. R. Peres, and A. H.
Castro Neto, “Unified description of the dc conductivity of monolayer and bilayer graphene
at finite densities based on resonant scatterers,” Phys. Rev. B, vol. 83, p. 165402, Apr 2011.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.83.165402 61
[89] A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche,
“Charge transport in disordered graphene-based low dimensional materials,” Nano
Research, vol. 1, pp. 361–394, 2008, 10.1007/s12274-008-8043-2. [Online]. Available:
http://dx.doi.org/10.1007/s12274-008-8043-2 62
[90] O. V. Yazyev and M. I. Katsnelson, “Magnetic correlations at graphene edges: Basis
for novel spintronics devices,” Phys. Rev. Lett., vol. 100, p. 047209, Jan 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.100.047209 62
[91] J. Kunstmann, C.‥Ozdo˘gan, A. Quandt, and H. Fehske, “Stability of edge states and edge
magnetism in graphene nanoribbons,” Phys. Rev. B, vol. 83, p. 045414, Jan 2011. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.83.045414 62
[92] M. B‥uttiker, “Small normal-metal loop coupled to an electron reservoir,”
Phys. Rev. B, vol. 32, pp. 1846–1849, Aug 1985. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.32.1846 63, 68
[93] G. Metalidis and P. Bruno, “Inelastic scattering effects and the Hall resistance in a
four-probe ring,” Phys. Rev. B, vol. 73, p. 113308, Mar 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.73.113308 64, 68
[94] Y. Xing, Q.-f. Sun, and J. Wang, “Influence of dephasing on the quantum Hall effect and
the spin Hall effect,” Phys. Rev. B, vol. 77, p. 115346, Mar 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.77.115346 64, 68
[95] J. Maassen, F. Zahid, and H. Guo, “Effects of dephasing in molecular transport junctions
using atomistic first principles,” Phys. Rev. B, vol. 80, p. 125423, Sep 2009. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.80.125423 64, 68
[96] K. S. Thygesen and A. Rubio, “Conserving GW scheme for nonequilibrium quantum
transport in molecular contacts,” Phys. Rev. B, vol. 77, p. 115333, Mar 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.77.115333 64, 65
[97] T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho, “Inelastic trans-
port theory from first principles: Methodology and application to nanoscale
devices,” Phys. Rev. B, vol. 75, p. 205413, May 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.75.205413 64, 69
[98] A. Hurley, N. Baadji, and S. Sanvito, “Spin-flip inelastic electron tunneling spectroscopy
in atomic chains,” Phys. Rev. B, vol. 84, p. 035427, Jul 2011. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.84.035427 64
[99] D. A. Areshkin and B. K. Nikoli’c, “Electron density and transport in top-gated graphene
nanoribbon devices: First-principles Green function algorithms for systems containing a
large number of atoms,” Phys. Rev. B, vol. 81, p. 155450, Apr 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.81.155450 64
[100] H. Ness and L. K. Dash, “Nonequilibrium quantum transport in fully interacting
single-molecule junctions,” Phys. Rev. B, vol. 84, p. 235428, Dec 2011. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.84.235428 66
[101] H. Ness, L. K. Dash, and R. W. Godby, “Generalization and applicability
of the Landauer formula for nonequilibrium current in the presence of in-
teractions,” Phys. Rev. B, vol. 82, p. 085426, Aug 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.82.085426 67
[102] H. Golub and C. F. van Van Loan, Matrix Computations. Johns Hopkins University Press,
Baltimore, 1996. 68
[103] A. Cresti and G. P. Parravicini, “Dephasing effects and shot noise in quantum Hall
wires: Green’s function formalism,” Phys. Rev. B, vol. 78, p. 115313, Sep 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.78.115313 68, 69
[104] L. P. Pryadko and A. Auerbach, “Hall resistivity and dephasing in the quantum Hall
insulator,” Phys. Rev. Lett., vol. 82, pp. 1253–1256, Feb 1999. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.82.1253 69
[105] K. Kazymyrenko and X. Waintal, “Knitting algorithm for calculating Green functions
in quantum systems,” Phys. Rev. B, vol. 77, p. 115119, Mar 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevB.77.115119 69
[106] M. Wimmer and K. Richter, “Optimal block-tridiagonalization of matrices for coherent
charge transport,” Journal of Computational Physics, vol. 228, no. 23, pp. 8548 – 8565, 2009.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0021999109004367
69
[107] B. K. Nikoli’c and R. L. Dragomirova, “What can we learn about the dynamics
of transported spins by measuring shot noise in spin-orbit-coupled nanostructures?”
Semiconductor Science and Technology, vol. 24, no. 6, p. 064006, 2009. [Online]. Available:
http://stacks.iop.org/0268-1242/24/i=6/a=064006 71
[108] Q.-f. Sun and X. C. Xie, “CT-invariant quantum spin Hall effect in ferromagnetic
graphene,” Phys. Rev. Lett., vol. 104, p. 066805, Feb 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.104.066805 71
[109] G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, A. D. Levin, N. N. Mikhailov, and
S. A. Dvoretsky, “Nonlocal transport near charge neutrality point in a two-dimensional
electron-hole system,” Phys. Rev. Lett., vol. 108, p. 226804, May 2012. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.108.226804 78
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65131-
dc.description.abstract本文利用非平衡格林函數方法研究二維異質結構系統(two-dimensional heterostructure)和石墨稀(graphene)中的自旋霍爾效應(spin Hall effect)。簡單地來說,自旋霍爾效應就是電流會感應與其垂直方向的自旋電流,自旋堆積通常也會伴隨而生。自旋霍爾效應以及其反效應(inverse spin Hall effect)可以分別被用來產生以及偵測自旋電流,對於自旋電子學,這個效應提供了一個電性方法去控制電子自旋,因此近年吸引來許多實驗學家與理論學家投入。

首先,我們考慮一個Rashba自旋軌道耦合的管狀二維電子氣體,探討管狀幾何結構對於自旋霍爾效應產生的影響。在此系統下,我們發現儘管自旋霍爾堆積消失了,自旋霍爾流仍然存在並且環行於系統中。另外,放入一個非磁性雜質,在雜質附近會感應出自旋堆積。這些現象不同於一般在平面上觀察到的自旋霍爾效應,可以建立我們對管狀系統中自旋霍爾效應的了解。

此外,目前只有少數實驗觀察到本質(intrinsic)自旋霍爾效應,為了讓本質自旋霍爾效應更顯著更容易觀察,我們提出一個方法去增強本質自旋霍爾堆積,此一研究發現在特定能量下自旋霍爾堆積會顯著地增強兩個數量級,增強效應來自於兩個相異對掌性的渦旋電流,利用自旋軌道力的圖像,可以了解兩個渦漩電流會受到自旋軌道力分別將自旋向上及向下的電子向渦漩中心推進,造成自旋堆積增強。進一步研究發現這個局部渦旋態來自於Fano-Rashba效應所造成的電導低谷。

另外,最近實驗上發現鎳基底會增強石墨稀上的Rashba自旋軌道耦合,為了研究此一自旋軌道耦合所產生的自旋霍爾效應,我們應用了Heisenberg運動方程式推導自旋軌道力。這個自旋軌道力不同於常見在半導體內的自旋軌道力,它可以提供石墨稀內自旋分離的物理圖像。此外,我們計算自旋霍爾電導,利用自旋軌道力定性解釋這個自旋霍爾效應。

最後,最近Geim的研究團隊在石墨稀上外加一個磁場做傳輸實驗量測,在Dirac point附近觀察到巨大的非局部電位差,出人意外地,這個信號可以傳遞長達數個微米的距離,並且在室溫下仍然可以觀察到,此一現象可以歸因於Zeeman splitting引起的巨大的自旋霍爾效應。為了進一步了解這個現象,我們利用非平衡格林函數計算這個量子傳輸現象,藉由現象學的多體自能(self energy)提供一個模擬去相位(dephasing)的方式,定性上解釋了高溫到低溫的實驗觀察,給予這個現象完整的理論圖像。
zh_TW
dc.description.abstractIn spintronics, spin-orbit coupling in semiconductors and metals has stimulated a great deal of work devoted to spin-orbit-induced phenomena, such as spin Hall effect, which makes electrical manipulation of electron spins possible. The thesis presents a theoretical study of transport of electron spin, mainly focusing on spin Hall effect, in two-dimensional electron gas (2DEG) systems, including two-dimensional semiconductor heterostructures and graphene by employing the Landauer-Keldysh formalism.

We start our work in the tubular 2DEG with Rashba spin-orbit coupling (SOC). This study reveals that the tubular geometry effect can cause spin-orbit-induced phenomena very different from those in a planar sample. In particular, in spite of the absence of spin accumulation, the spin Hall current can still arise and even circulate in the tubular sample. A spin-independent impurity will induce distinctive spin accumulation patterns around the impurity, which may serve as a novel mechanism to control electron spins by arranging the impurities for spintronic devices.

Next, to make intrinsic spin Hall effect more experimentally observable, we investigate the enhancement of intrinsic spin Hall accumulation in a two-dimensional electron gas with Rashba and Dresselhaus (001) spin-orbit coupling. We show that intrinsic spin Hall accumulation can be strongly enhanced at the specific energy point, where the system develop two charge current vortices with certain chirality. We find the localized vortex state is accompanied by the occurrence of the conductance dip arising from Fano-Rashba effect. The spin-orbit force picture is used to analyze the enhanced spin accumulation patterns.

Then, motivated by the experimental observed large Rashba spin-splitting, we derive the effective spin-orbit force in Rashba coupled graphene from the Heisenberg equation of motion. The spin-orbit force, different from that in conventional semiconductors, can provide us a physical picture of unusual spin separation due to Rashba spin-orbit coupling in graphene. This picture is useful to design the spin generator device based on graphene. Furthermore, we numerically calculate spin Hall conductance and qualitatively explain the result by the spin-orbit force picture in graphene.

Finally, a very recent experiment [D. A. Abanin et al., Science 332, 328 (2011)] observed the giant nonlocal voltage in magnetotransport near the Dirac point in graphene. This giant nonlocal voltage signal, transmitting over several micrometers, is attributed to an unusual giant spin Hall effect induced by Zeeman splitting in graphene without SOC. In order to further understand this phenomenon, we have developed a fully quantum transport theory with dephasing introduced via phenomenological many-body self-energies. By employing this theory, we provide a unified picture of the giant nonlocal voltage and spin Hall effect from the quantum-coherent transport regime at low temperatures to a semiclassical transport regime at higher temperatures.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:26:24Z (GMT). No. of bitstreams: 1
ntu-101-D95222029-1.pdf: 2731124 bytes, checksum: e55b0caea82220b5be878a218a2ed558 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝i
中文摘要i
Abstract i
List of Publications iv
List of Abbreviations v
List of Figures vi
1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-dimensional electron systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Semiconductor heterostructures . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Spin Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Spin transport in a tubular 2DEG with Rashba spin-orbit coupling 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Tight-binding model and Landauer-Keldysh formalism in tubular systems . . . . . 21
2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Equilibrium case: Local spin current . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Nonequilibrium case: Current-induced spin polarization and spin Hall effect 33
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Enhanced spin Hall accumulation accompanied by two charge current vortices 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Landauer-Keldysh formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Spin orbit force in graphene with Rashba spin-orbit force 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Spin-orbit force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 Giant spin Hall effect and nonlocal voltage near the Dirac point in graphene 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 The device Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 NEGF for dephasing in quantum transport through multiterminal devices . . . . . . 63
5.4 Application of momentum-relaxing model of dephasing to ZSHE in graphene . . . 68
5.4.1 Four-terminal graphene Hall bars . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Six-terminal graphene Hall bars . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Summary and Outlook 76
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Bibliography 79
dc.language.isoen
dc.subject自旋霍爾效應zh_TW
dc.subject自旋軌道力zh_TW
dc.subject自旋軌道耦合zh_TW
dc.subject二維電子氣體zh_TW
dc.subject量子傳輸zh_TW
dc.subject石墨稀zh_TW
dc.subject非平衡格林函數zh_TW
dc.subjectspin Hall effecten
dc.subjectquantum transporten
dc.subjectnonequilibrium Green’s function formalismen
dc.subjectgrapheneen
dc.subject2DEGen
dc.subjectspin orbit forceen
dc.subjectspin-orbit couplingen
dc.title二維異質結構系統和石墨稀內的自旋霍爾效應zh_TW
dc.titleSpin Hall effect in two-dimensional heterostructure and grapheneen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee胡崇德,郭光宇,李偉立,關肇正,林昭吟
dc.subject.keyword自旋霍爾效應,自旋軌道耦合,自旋軌道力,二維電子氣體,石墨稀,非平衡格林函數,量子傳輸,zh_TW
dc.subject.keywordspin Hall effect,spin-orbit coupling,spin orbit force,2DEG,graphene,nonequilibrium Green’s function formalism,quantum transport,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved