Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張?仁
dc.contributor.authorYu-Lun Suen
dc.contributor.author蘇昱倫zh_TW
dc.date.accessioned2021-06-16T23:25:58Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citation1. Varnum BC, Ma QF, Chi TH, Fletcher B, Herschman HR (1991) The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 11: 1754-1758.
2. DuBois RN, McLane MW, Ryder K, Lau LF, Nathans D (1990) A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 265: 19185-19191.
3. Lai WS, Stumpo DJ, Blackshear PJ (1990) Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 265: 16556-16563.
4. Taylor GA, Lai WS, Oakey RJ, Seldin MF, Shows TB, et al. (1991) The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Res 19: 3454.
5. Blackshear PJ, Phillips RS, Ghosh S, Ramos SB, Richfield EK, et al. (2005) Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73: 297-307.
6. Medzhitov R, Janeway C, Jr. (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173: 89-97.
7. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335-376.
8. Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19: 351-361.
9. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001-1005.
10. Brewer BY, Malicka J, Blackshear PJ, Wilson GM (2004) RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of Au-rich MRNA-destabilizing motifs. J Biol Chem 279: 27870-27877.
11. Blackshear PJ, Lai WS, Kennington EA, Brewer G, Wilson GM, et al. (2003) Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J Biol Chem 278: 19947-19955.
12. Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, et al. (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277: 48558-48564.
13. Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE (2004) Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11: 257-264.
14. Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding sites on mRNA deadenylation and turnover. J Biol Chem 280: 34365-34377.
15. Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275: 17827-17837.
16. Raghavan A, Robison RL, McNabb J, Miller CR, Williams DA, et al. (2001) HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J Biol Chem 276: 47958-47965.
17. Cao H (2004) Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Biochemistry 43: 13724-13738.
18. Ogilvie RL, Abelson M, Hau HH, Vlasova I, Blackshear PJ, et al. (2005) Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J Immunol 174: 953-961.
19. Raghavan AV, Decker WW, Meloy TD (2005) Management of atrial fibrillation in the emergency department. Emerg Med Clin North Am 23: 1127-1139.
20. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20: 465-470.
21. Xu N, Chen CY, Shyu AB (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17: 4611-4621.
22. Stoecklin G, Tenenbaum SA, Mayo T, Chittur SV, George AD, et al. (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283: 11689-11699.
23. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, et al. (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19: 4311-4323.
24. Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95: 1891-1899.
25. Lai WS, Kennington EA, Blackshear PJ (2002) Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277: 9606-9613.
26. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, et al. (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12: 1054-1063.
27. Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, et al. (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36: 3374-3388.
28. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11: 121-127.
29. Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8: 9-22.
30. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113-126.
31. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7: 719-723.
32. Franks TM, Lykke-Andersen J (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21: 719-735.
33. Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20: 905-915.
34. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, et al. (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623-634.
35. Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, et al. (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107: 451-464.
36. Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7: 529-539.
37. Fechir M, Linker K, Pautz A, Hubrich T, Forstermann U, et al. (2005) Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene. Mol Pharmacol 67: 2148-2161.
38. Carman JA, Nadler SG (2004) Direct association of tristetraprolin with the nucleoporin CAN/Nup214. Biochem Biophys Res Commun 315: 445-449.
39. Twizere JC, Kruys V, Lefebvre L, Vanderplasschen A, Collete D, et al. (2003) Interaction of retroviral Tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor-alpha expression. J Natl Cancer Inst 95: 1846-1859.
40. Chen CY, Del Gatto-Konczak F, Wu Z, Karin M (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280: 1945-1949.
41. Ming XF, Kaiser M, Moroni C (1998) c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. EMBO J 17: 6039-6048.
42. Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, et al. (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18: 4969-4980.
43. Ming XF, Stoecklin G, Lu M, Looser R, Moroni C (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 21: 5778-5789.
44. Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, et al. (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1: 94-97.
45. Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R, et al. (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 277: 3065-3068.
46. Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, et al. (2004) MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 279: 10176-10184.
47. Johnson BA, Stehn JR, Yaffe MB, Blackwell TK (2002) Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. J Biol Chem 277: 18029-18036.
48. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, et al. (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23: 1313-1324.
49. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, et al. (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26: 2399-2407.
50. Sun L, Stoecklin G, Van Way S, Hinkovska-Galcheva V, Guo RF, et al. (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282: 3766-3777.
51. Taylor GA, Thompson MJ, Lai WS, Blackshear PJ (1996) Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 10: 140-146.
52. Murata T, Hikita K, Kaneda N (2000) Transcriptional activation function of zinc finger protein TIS11 and its negative regulation by phorbol ester. Biochem Biophys Res Commun 274: 526-532.
53. Murata T, Yoshino Y, Morita N, Kaneda N (2002) Identification of nuclear import and export signals within the structure of the zinc finger protein TIS11. Biochem Biophys Res Commun 293: 1242-1247.
54. Blobel G (1973) A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci U S A 70: 924-928.
55. Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G (1986) mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6: 2932-2943.
56. Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45: 827-835.
57. Nemeth A, Krause S, Blank D, Jenny A, Jeno P, et al. (1995) Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucleic Acids Res 23: 4034-4041.
58. Wahle E (1991) A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66: 759-768.
59. Winstall E, Sadowski M, Kuhn U, Wahle E, Sachs AB (2000) The Saccharomyces cerevisiae RNA-binding protein Rbp29 functions in cytoplasmic mRNA metabolism. J Biol Chem 275: 21817-21826.
60. Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, et al. (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18: 164-167.
61. Kerwitz Y, Kuhn U, Lilie H, Knoth A, Scheuermann T, et al. (2003) Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO J 22: 3705-3714.
62. Kuhn U, Nemeth A, Meyer S, Wahle E (2003) The RNA binding domains of the nuclear poly(A)-binding protein. J Biol Chem 278: 16916-16925.
63. Keller RW, Kuhn U, Aragon M, Bornikova L, Wahle E, et al. (2000) The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J Mol Biol 297: 569-583.
64. Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11: 2755-2766.
65. Minvielle-Sebastia L, Keller W (1999) mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 11: 352-357.
66. Wahle E, Ruegsegger U (1999) 3'-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23: 277-295.
67. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63: 405-445.
68. Wahle E, Keller W (1992) The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61: 419-440.
69. Hall TMT (2002) Poly(A) tail synthesis and regulation: recent structural insights. Current Opinion in Structural Biology 12: 82-88.
70. Bienroth S, Keller W, Wahle E (1993) Assembly of a processive messenger RNA polyadenylation complex. EMBO J 12: 585-594.
71. Sawicki SG, Jelinek W, Darnell JE (1977) 3'-Terminal addition to HeLa cell nuclear and cytoplasmic poly (A). J Mol Biol 113: 219-235.
72. Wahle E (1995) Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 270: 2800-2808.
73. Calado A, Kutay U, Kuhn U, Wahle E, Carmo-Fonseca M (2000) Deciphering the cellular pathway for transport of poly(A)-binding protein II. RNA 6: 245-256.
74. Bear DG, Fomproix N, Soop T, Bjorkroth B, Masich S, et al. (2003) Nuclear poly(A)-binding protein PABPN1 is associated with RNA polymerase II during transcription and accompanies the released transcript to the nuclear pore. Exp Cell Res 286: 332-344.
75. Kuhn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678: 67-84.
76. Chen Z, Li Y, Krug RM (1999) Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J 18: 2273-2283.
77. Apponi LH, Leung SW, Williams KR, Valentini SR, Corbett AH, et al. (2010) Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Hum Mol Genet 19: 1058-1065.
78. Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, et al. (2010) The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 37: 34-45.
79. Reichow SL, Hamma T, Ferre-D'Amare AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35: 1452-1464.
80. Grzechnik P, Kufel J (2008) Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol Cell 32: 247-258.
81. Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4-9.
82. O'Neill L (2000) The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence. Biochem Soc Trans 28: 557-563.
83. Inohara N, Ogura Y, Nunez G (2002) Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol 5: 76-80.
84. Akira S (2003) Mammalian Toll-like receptors. Curr Opin Immunol 15: 5-11.
85. Deane JA, Fruman DA (2004) Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22: 563-598.
86. Koyasu S (2003) The role of PI3K in immune cells. Nat Immunol 4: 313-319.
87. Fukao T, Koyasu S (2003) PI3K and negative regulation of TLR signaling. Trends Immunol 24: 358-363.
88. Liew FY, Xu D, Brint EK, O'Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5: 446-458.
89. Monick MM, Robeff PK, Butler NS, Flaherty DM, Carter AB, et al. (2002) Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J Biol Chem 277: 32992-33000.
90. Diaz-Guerra MJ, Castrillo A, Martin-Sanz P, Bosca L (1999) Negative regulation by phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. J Immunol 162: 6184-6190.
91. Park YC, Lee CH, Kang HS, Chung HT, Kim HD (1997) Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, enhances LPS-induced NO production from murine peritoneal macrophages. Biochem Biophys Res Commun 240: 692-696.
92. Weinstein SL, Finn AJ, Dave SH, Meng F, Lowell CA, et al. (2000) Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta. J Leukoc Biol 67: 405-414.
93. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277: 32124-32132.
94. Schabbauer G, Tencati M, Pedersen B, Pawlinski R, Mackman N (2004) PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol 24: 1963-1969.
95. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37-40.
96. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153-183.
97. Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20: 55-72.
98. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838-2849.
99. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4: 82-89.
100. Volmat V, Pouyssegur J (2001) Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol Cell 93: 71-79.
101. Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91-118.
102. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268-275.
103. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, et al. (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21: 6461-6469.
104. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, et al. (2000) TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103: 1071-1083.
105. Opitz B, Puschel A, Beermann W, Hocke AC, Forster S, et al. (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176: 484-490.
106. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746.
107. Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297: 2048-2051.
108. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, et al. (2004) Protein tyrosine phosphatases in the human genome. Cell 117: 699-711.
109. Keyse SM, Ginsburg M (1993) Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends Biochem Sci 18: 377-378.
110. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12: 186-192.
111. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14: 6-16.
112. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2: 110-116.
113. Tanoue T, Yamamoto T, Nishida E (2002) Modular Structure of a Docking Surface on MAPK Phosphatases. Journal of Biological Chemistry 277: 22942-22949.
114. Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75: 487-493.
115. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology 12: 186-192.
116. Matsuguchi T, Musikacharoen T, Johnson TR, Kraft AS, Yoshikai Y (2001) A Novel Mitogen-Activated Protein Kinase Phosphatase Is an Important Negative Regulator of Lipopolysaccharide-Mediated c-Jun N-Terminal Kinase Activation in Mouse Macrophage Cell Lines. Mol Cell Biol 21: 6999-7009.
117. Schwan WR, Kügler S, Schüller S, Kopecko DJ, Goebel W (1996) Detection and characterization by differential PCR of host eukaryotic cell genes differentially transcribed following uptake of intracellular bacteria. Infect Immun 64: 91-99.
118. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, et al. (2006) Essential Role of MAPK Phosphatase-1 in the Negative Control of Innate Immune Responses. The Journal of Immunology 176: 1899-1907.
119. Shepherd EG, Zhao Q, Welty SE, Hansen TN, Smith CV, et al. (2004) The Function of Mitogen-activated Protein Kinase Phosphatase-1 in Peptidoglycan-stimulated Macrophages. Journal of Biological Chemistry 279: 54023-54031.
120. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, et al. (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A 103: 2274-2279.
121. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, et al. (2006) MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203: 131-140.
122. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, et al. (2006) Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 203: 15-20.
123. Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, et al. (2007) Knockout of Mkp-1 Enhances the Host Inflammatory Responses to Gram-Positive Bacteria. The Journal of Immunology 178: 5312-5320.
124. Lau LF, Nathans D (1985) Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4: 3145-3151.
125. Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, et al. (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 21: 8213-8224.
126. Ryser S, Massiha A, Piuz I, Schlegel W (2004) Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter. Biochem J 378: 473-484.
127. Fujita T, Ryser S, Tortola S, Piuz I, Schlegel W (2007) Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells. Nucleic Acids Res 35: 1007-1017.
128. Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175-178.
129. Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF (1988) Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 263: 18466-18472.
130. Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281: 10473-10481.
131. Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, et al. (2007) Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179: 3622-3630.
132. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, et al. (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441: 173-178.
133. Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65: 775-783.
134. Barratt MJ, Hazzalin CA, Cano E, Mahadevan LC (1994) Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc Natl Acad Sci U S A 91: 4781-4785.
135. Thomson S, Mahadevan LC, Clayton AL (1999) MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol 10: 205-214.
136. Peng SS, Chen CY, Shyu AB (1996) Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements. Mol Cell Biol 16: 1490-1499.
137. Wilson T, Treisman R (1988) Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature 336: 396-399.
138. Emslie EA, Jones TA, Sheer D, Keyse SM (1994) The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Hum Genet 93: 513-516.
139. Charles CH, Abler AS, Lau LF (1992) cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene 7: 187-190.
140. Dean JL, Sully G, Clark AR, Saklatvala J (2004) The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16: 1113-1121.
141. Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, et al. (1999) Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 274: 12890-12897.
142. Khuu CH, Barrozo RM, Hai T, Weinstein SL (2007) Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol 44: 1598-1605.
143. Rino J, Desterro JM, Pacheco TR, Gadella TW, Jr., Carmo-Fonseca M (2008) Splicing factors SF1 and U2AF associate in extraspliceosomal complexes. Mol Cell Biol 28: 3045-3057.
144. Stoye JP, Coffin JM (1987) The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J Virol 61: 2659-2669.
145. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, et al. (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416: 387-394.
146. Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11: 2655-2664.
147. Kuhn U, Gundel M, Knoth A, Kerwitz Y, Rudel S, et al. (2009) Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem 284: 22803-22814.
148. Rowlett RM, Chrestensen CA, Schroeder MJ, Harp MG, Pelo JW, et al. (2008) Inhibition of tristetraprolin deadenylation by poly(A) binding protein. Am J Physiol Gastrointest Liver Physiol 295: G421-430.
149. Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, et al. (2010) MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 285: 27590-27600.
150. Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J (2011) Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 31: 256-266.
151. Sandler H, Kreth J, Timmers HT, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39: 4373-4386.
152. Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4: 223.
153. Lemay JF, Lemieux C, St-Andre O, Bachand F (2010) Crossing the borders: poly(A)-binding proteins working on both sides of the fence. RNA Biol 7: 291-295.
154. Sato H, Maquat LE (2009) Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev 23: 2537-2550.
155. Lemieux C, Bachand F (2009) Cotranscriptional recruitment of the nuclear poly(A)-binding protein Pab2 to nascent transcripts and association with translating mRNPs. Nucleic Acids Res 37: 3418-3430.
156. Lai WS, Kennington EA, Blackshear PJ (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 23: 3798-3812.
157. Blackshear PJ (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30: 945-952.
158. Phillips RS, Ramos SB, Blackshear PJ (2002) Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 277: 11606-11613.
159. Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, et al. (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26: 2408-2418.
160. Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36: 491-496.
161. Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99-110.
162. Prouteau M, Daugeron MC, Seraphin B (2008) Regulation of ARE transcript 3' end processing by the yeast Cth2 mRNA decay factor. EMBO J 27: 2966-2976.
163. Saguez C, Olesen JR, Jensen TH (2005) Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol 17: 287-293.
164. Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81: 179-183.
165. Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89: 831-838.
166. Milligan L, Torchet C, Allmang C, Shipman T, Tollervey D (2005) A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol Cell Biol 25: 9996-10004.
167. Han J, Thompson P, Beutler B (1990) Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med 172: 391-394.
168. Swantek JL, Cobb MH, Geppert TD (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 17: 6274-6282.
169. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosy
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65120-
dc.description.abstract第一部分:
已知TTP藉由與多AU序列的結合導致成熟訊息核醣核酸的不穩定,本實驗室先前利用phage-display尋找與TTP交互作用的蛋白質來進一步瞭解TTP的作用機制。phage-display數據顯示PABPN1與TTP有交互作用。PABPN1可以幫助訊息核醣核酸的聚腺苷酸化 (polyadenylation)並增加聚腺苷酸化酶 [Poly(A) polymerase]對聚腺苷酸的親和性。聚腺苷酸化在訊息核醣核酸由細胞核到細胞質的運輸、本身穩定度以及轉譯效率的維持都扮演重要角色。本論文使用共同免疫沉澱法確認TTP與PABPN1的交互作用,雖然TTP與PABPN1都存在於細胞質與細胞核,但兩者的交互作用只在細胞核內。若在細胞內表現侷限在細胞核內的突變TTP,可以觀察到此突變TTP具有降低帶有腫瘤壞死因子的多AU序列的報導基因的表現蛋白酵素效力降低。有趣的是,在試管中TTP被發現藉由與PABPN1交互作用造成帶有多AU序列的訊息核醣核酸的聚腺苷酸化程度降低。當在小鼠巨噬細胞RAW264.7中以脂多醣誘導腫瘤壞死因子的表現,可以觀察到在細胞核內被誘導出腫瘤壞死因子的訊息核醣核酸的聚腺苷酸化程度的降低與被誘導表現增加的TTP具有關連性。結論是,TTP除了已知在細胞質內造成帶有多AU序列的訊息核醣核酸的降解功能,TTP在細胞核內藉由與PABPN1的交互作用來調節帶有多AU序列的訊息核醣核酸的表現。
第二部分:
免疫反應仰賴於MAPK訊息傳遞,特別是p38與Jnk。這些激酶會經由原發炎促進劑刺激細胞而受到活化,並誘發許多免疫調節基因的表現進而引起發炎或免疫反應。p38與Jnk會經由DUSP的其中一員, Mkp-1, 將其去磷酸化而喪失活性。近年報導提出Mkp-1的確在免疫反應中的有重要的調節功能。本論文中發現在以脂多醣刺激的小鼠巨噬細胞RAW264.7中Mkp-1的訊息核醣核酸的表現在三十至六十分鐘被快速活化,接著在刺激兩小時後又降低不到誘發最多量的一半。在此Mkp-1的訊息核醣核酸的增多與減少是受到何種轉綠因子與訊息傳遞路徑調控將在本論文中被探討。發現屬於Atf/Creb家族蛋白的Creb1與Atf3會與Mkp-1基因的啟動子 (promoter)結合並會增加帶有Mkp-1啟動子的報導基因的產物酵素的活性。若在RAW264.7中造成Atf3的基因靜默,可以觀察到Mkp-1訊息核醣核酸表現降低。因此,Creb1與Atf3會正向調節Mkp-1的表現。另外,在脂多醣刺激兩小時後的RAW264.7中可以觀察到PI3K訊息傳遞路徑的活化,已知該訊息途徑會負向調節TLR4的訊息途徑。當細胞內存在PI3K訊息途徑的抑制子,Wortmannin時,Mkp-1的訊息核醣核酸量會提升。藉由微陣列矩陣分析與即時聚合酶反應,Id3被鑑定為PI3K下游的轉錄因子來負向調節Mkp-1核醣核酸的表現。未來將需要更多實驗證明在脂多醣刺激的RAW264.7中Id3調節Mkp-1核醣核酸表現的分子機制。
zh_TW
dc.description.abstractPart I
Tristetraprolin (TTP) binds mRNA AU-rich elements (ARE) and thereby facilitates the destabilization of mature mRNA. To understand how TTP mechanistically functions, previously our lab biopanned with a phage-display library for proteins that interact with TTP and retrieved, among others, poly(A) binding protein nuclear 1 (PABPN1). PABPN1 assists in the 3’-polyadenylation of mRNA by binding to an immature poly(A) tail and increasing the affinity of poly(A) polymerase, which is directly responsible for polyadenylation. The poly(A) tail is important for mRNA export from the nucleus, mRNA stabilization, and translation efficiency. The TTP/PABPN1 interaction was characterized using co-immunoprecipitation assays. Although TTP and PABPN1 are located in both the cytoplasm and the nucleus, they interacted in vivo only in the nucleus. Expression of a TTP mutant restricted to the nucleus resulted in the downregulation of a TNFα ARE-containing luciferase activity .Interestingly, we found that TTP binds PABPN1 and thereby inhibits polyadenylation of ARE-containing mRNA in vitro. When TNFα mRNA was induced in mouse RAW264.7 cells by lipopolysaccharide treatment, synthesis of a shorter poly(A) tail in nuclear TNFα mRNA and an increased expression of TTP occurred. Consequently, in addition to its known cytosolic mRNA-degrading function, TTP inhibits poly(A) tail synthesis by interacting with PABPN1 in the nucleus to regulate expression of ARE-containing mRNA.
Part II
Innate immune responses rely on the MAPK signaling pathway, especially p38 and Jnk. These kinases are activated by pro-inflammatory agonists, and lead to inflammatory or innate immune responses by regulating the expression of several effector genes. Both p38 and Jnk are negatively regulated through their dephosphorylation by MAPK phosphatase 1 (Mkp-1), a member of dual specificity protein phosphatase (DUSP). Recent reports supported that Mkp-1 is a critical regulator of innate immunity. Previously, we have demonstrated that the mRNA of Mkp-1 was rapidly elevated around 30 to 60 minutes and soon decreased less than half after LPS stimulation for 2 h in RAW264.7 cells. Here we concerned with the molecular mechanism in control of the growth and decline of Mkp-1 mRNA at transcriptional level. Creb1 and Atf3, members of the Atf/Creb family protein, were shown to associate with the Mkp-1 promoter and increase the activity of luciferase reporter that carrying the Mkp-1 promoter. Knockdown of Atf3 in RAW264.7 cells resulted in Mkp-1 mRNA downregulation. Therefore, Creb1 and Atf3 regulate Mkp-1 expression positively. The PI3K signaling pathway, which was activated after LPS stimulation for 2 h, was suggested to play an opposite role to restrict the TLR4 signaling. The Mkp-1 mRNA level was increased in the presence of the PI3K signaling inhibitor, Wortmannin. Using the microarray analysis and real time PCR, the Id3 was identified and confirmed for the candidates that downstream of PI3K signaling to regulate Mkp-1 expression. Further studies are needed to examine the function of Id3 and the molecular mechanism of regulating Mkp-1 expression in LPS-stimulated RAW264.7 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:25:58Z (GMT). No. of bitstreams: 1
ntu-101-F94b46010-1.pdf: 8222437 bytes, checksum: 5de4b91206766264353690422e0e47c7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENT ix
LIST OF FIGURE xiii
LIST OF TABLE xiv
LIST OF SUPPLEMENTAL xv
ABBREVIATION xvi
CHAPTER 1 INTRODUCTION 2
1. TIS11 family of RNA binding proteins 2
1.1 Overview of TIS11 family 2
1.2 TTP and its role in adenosine-uridine rich element (ARE)-mediated decay…………………………………………………………………………..2
1.3 TTP-interacting proteins 5
1.4 Control of mRNA decay by phosphorylation of TTP 6
1.5 Localization of TTP 7
2. Poly(A) binding proteins 8
2.1 Overview of Poly(A) binding proteins 8
2.2 PABPN1 9
3. Innate immune system 15
3.1 Immune system 15
3.2 Toll-like receptor signaling 17
3.3 PI3K signaling, new players in TLR-mediated innate immunity 17
4. Role of mitogen-activated kinase phosphatase-1 (MKP-1) in innate immune system 19
4.1 Mitogen-activated protein kinase (MAPK) and inflammation 19
4.2 Overview of MKPs 20
4.3 MKP-1 in regulating the inflammation 21
5. The regulation of Mkp-1 expression 24
5.1 Transcriptional level 24
5.2 Post-transcriptional level 29
CHAPTER 2 MATERIAL AND METHOD 32
1. Plasmid constructs 32
2. Cell Culture 33
2.1 Mouse macrophage RAW264.7 cells 33
2.2 Human embryonic kidney (HEK) 293T cells 34
2.3 HeLa cells 34
3. RNA isolation and reverse transcription 34
4. Semiquantitative PCR 35
5. Real time PCR 36
6. Electrophoretic mobility shift assay (EMSA) 37
7. Microarray analysis 37
8. Chromatin immunoprecipitation (ChIP) 38
9. Cytosolic, nuclear, and whole-cell extract preparations and immunoprecipitation assays 39
10. Western blot and antibody 41
11. Immunofluorescence staining 42
12. In vitro polyadenylation assay 43
13. Transfection and luciferase-reporter assay 45
14. Ligation-mediated poly(A) test (LM-PAT) 46
15. Short hairpin RNA 47
16. Lentivirus-mediated knockdown 48
17. Statistical analysis 48
CHAPTER 3 RESULT 50
1. TTP interacts with PABPN1 in RAW264.7 cells 50
2. TTP was able to destabilize TNFα mRNA in the nucleus 52
3. TTP inhibits polyadenylation by PAP/PABPN1 of an ARE-containing RNA in vitro 53
4. The TTP/PABPN1 interaction shortens the poly(A) tail of nuclear TNFα mRNA 55
5. TTP family members are implied that participate in controlling TNFα mRNA through interacting with PABPN1 57
6. Mkp-1 is induced in LPS-stimulated RAW264.7 cells 58
7. Creb1 and Atf3 positively regulate Mkp-1 expression through transcriptional level 59
8. Mkp-1 expression is negatively regulated via PI3K signaling 61
CHAPTER 4 DISCUSSION 65
CHAPTER 5 FIGURE 79
CHAPTER 6 TABLE 122
CHAPTER 7 SUPPLEMENTAL 127
APPENDIX 134
REFERENCE 142
dc.language.isoen
dc.subjectMAPK磷酸&#37238zh_TW
dc.subject1 (Mkp-1)zh_TW
dc.subject脂多醣zh_TW
dc.subject活化轉錄因子3 (Atf3)zh_TW
dc.subjectcAMP反應元件結合蛋白1 (Creb1)zh_TW
dc.subject磷酸肌醇3激&#37238zh_TW
dc.subject聚&#33527zh_TW
dc.subject轉錄調控zh_TW
dc.subject酸結合蛋白1 (PABPN1)zh_TW
dc.subject核內聚&#33527zh_TW
dc.subject多AU序列zh_TW
dc.subject鋅指蛋白36 (TTP)zh_TW
dc.subject抑製劑 (PI3K)zh_TW
dc.subject酸zh_TW
dc.subjectCreb1en
dc.subjectAU-rich elementen
dc.subjectpoly(A) binding protein nuclear 1en
dc.subjectpoly(A) tailen
dc.subjectMkp-1en
dc.subjectLPSen
dc.subjectAtf3en
dc.subjectTristetraprolinen
dc.subjectPI3Ken
dc.subjecttranscriptional regulationen
dc.title第一部分:Tristetraprolin 藉由與PABPN1 的交互作用抑制細胞核內帶
有多AU 序列的訊息核醣核酸的聚腺苷酸化
第二部分:小鼠巨噬細胞 RAW264.7 中以脂多醣誘發Mkp-1 表現的轉
錄調控
zh_TW
dc.titlePart I: Tristetraprolin (TTP) inhibits poly(A)-tail synthesis in nuclear
mRNA that contains AU-rich elements by interacting with poly(A)-binding
protein nuclear 1 (PABPN1)
Part II: Transcriptional regulation of mitogen-activated protein kinase
phosphatase-1 (Mkp-1) expression in LPS-stimulated mouse macrophage
RAW264.7 cells
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee張震東,余榮熾,朱善德,張茂山
dc.subject.keyword鋅指蛋白36 (TTP),多AU序列,核內聚&#33527,酸結合蛋白1 (PABPN1),聚&#33527,酸,MAPK磷酸&#37238,1 (Mkp-1),脂多醣,活化轉錄因子3 (Atf3),cAMP反應元件結合蛋白1 (Creb1),磷酸肌醇3激&#37238,抑製劑 (PI3K),轉錄調控,zh_TW
dc.subject.keywordTristetraprolin,AU-rich element,poly(A) binding protein nuclear 1,poly(A) tail,Mkp-1,LPS,Atf3,Creb1,PI3K,transcriptional regulation,en
dc.relation.page162
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved