請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊雅惠 | |
| dc.contributor.author | Pin-Yi Lin | en |
| dc.contributor.author | 林品儀 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:25:35Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | 1. Van Hove, C.L., et al., Chronic inflammation in asthma: a contest of persistence vs resolution. Allergy, 2008. 63(9): p. 1095-109.
2. Bousquet, J., et al., Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med, 2000. 161(5): p. 1720-45. 3. Hammad, H. and B.N. Lambrecht, Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J Allergy Clin Immunol, 2006. 118(2): p. 331-6. 4. Shortman, K. and Y.J. Liu, Mouse and human dendritic cell subtypes. Nature Reviews Immunology, 2002. 2(3): p. 151-61. 5. Lambrecht, B.N. and H. Hammad, Biology of Lung Dendritic Cells at the Origin of Asthma. Immunity, 2009. 31(3): p. 412-424. 6. Kauffman, H.F., Innate immune responses to environmental allergens. Clinical Reviews in Allergy & Immunology, 2006. 30(2): p. 129-140. 7. Kato, A., et al., TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. Journal of Immunology, 2007. 179(2): p. 1080-1087. 8. Ebeling, C., et al., Proteinase-activated receptor-2 promotes allergic Sensitization to an inhaled antigen through a TNF-Mediated pathway. Journal of Immunology, 2007. 179(5): p. 2910-2917. 9. Stumbles, P.A., et al., Regulation of dendritic cell recruitment into resting and inflamed airway epithelium: Use of alternative chemokine receptors as a function of inducing stimulus. Journal of Immunology, 2001. 167(1): p. 228-234. 10. Soumelis, V., et al., Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nature Immunology, 2002. 3(7): p. 673-680. 11. Reber, L., C.A. Da Silva, and N. Frossard, Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. European Journal of Pharmacology, 2006. 533(1-3): p. 327-340. 12. Barnes, P.J., Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 2008. 8(3): p. 183-192. 13. Galli, S.J., et al., Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu Rev Immunol, 2005. 23: p. 749-86. 14. Barrett, N.A. and K.F. Austen, Innate cells and T helper 2 cell immunity in airway inflammation. Immunity, 2009. 31(3): p. 425-37. 15. Boyce, J.A. and K.F. Austen, No audible wheezing: nuggets and conundrums from mouse asthma models. Journal of Experimental Medicine, 2005. 201(12): p. 1869-1873. 16. Mishra, A., et al., Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. Journal of Biological Chemistry, 2002. 277(6): p. 4406-4412. 17. Dent, L.A., et al., Eosinophilia in Transgenic Mice Expressing Interleukin-5. Journal of Experimental Medicine, 1990. 172(5): p. 1425-1431. 18. Tominaga, A., et al., Transgenic Mice Expressing a B-Cell Growth and Differentiation Factor Gene (Interleukin-5) Develop Eosinophilia and Autoantibody Production. Journal of Experimental Medicine, 1991. 173(2): p. 429-437. 19. Lee, J.J., et al., Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. Journal of Experimental Medicine, 1997. 185(12): p. 2143-2156. 20. Justice, J.P., et al., Ablation of eosinophils leads to a reduction of allergen-induced pulmonary pathology. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2003. 284(1): p. L169-L178. 21. Leckie, M.J., et al., Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet, 2000. 356(9248): p. 2144-2148. 22. Flood-Page, P., et al., Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. Journal of Clinical Investigation, 2003. 112(7): p. 1029-1036. 23. Holgate, S.T. and R. Polosao, Treatment strategies for allergy and asthma. Nature Reviews Immunology, 2008. 8(3): p. 218-230. 24. Gould, H.J. and B.J. Sutton, IgE in allergy and asthma today. Nature Reviews Immunology, 2008. 8(3): p. 205-217. 25. Holgate, S.T., et al., Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clinical and Experimental Allergy, 2005. 35(4): p. 408-16. 26. Lloyd, C.M. and E.M. Hessel, Functions of T cells in asthma: more than just T(H)2 cells. Nature Reviews Immunology, 2010. 10(12): p. 838-48. 27. Cohn, L., J.A. Elias, and G.L. Chupp, Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol, 2004. 22: p. 789-815. 28. Wills-Karp, M., Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol, 1999. 17: p. 255-81. 29. Brusselle, G.G., et al., Attenuation of allergic airway inflammation in IL-4 deficient mice. Clinical and Experimental Allergy, 1994. 24(1): p. 73-80. 30. Sanderson, C.J., Interleukin-5, eosinophils, and disease. Blood, 1992. 79(12): p. 3101-9. 31. Foster, P.S., et al., Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med, 1996. 183(1): p. 195-201. 32. Finkelman, F.D., et al., Importance of cytokines in murine allergic airway disease and human asthma. J Immunol, 2010. 184(4): p. 1663-74. 33. Alvarez, M.J., et al., Airway inflammation in asthma and perennial allergic rhinitis. Relationship with nonspecific bronchial responsiveness and maximal airway narrowing. Allergy, 2000. 55(4): p. 355-362. 34. Coffman, R.L., Immunology. The origin of TH2 responses. Science, 2010. 328(5982): p. 1116-7. 35. Moro, K., et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature, 2010. 463(7280): p. 540-U160. 36. Neill, D.R., et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 2010. 464(7293): p. 1367-U9. 37. Ozaki, K., et al., Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(21): p. 11439-11444. 38. Spolski, R. and W.J. Leonard, Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol, 2008. 26: p. 57-79. 39. Parrish-Novak, J., et al., Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol, 2002. 72(5): p. 856-63. 40. Asao, H., et al., Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol, 2001. 167(1): p. 1-5. 41. Parrish-Novak, J., et al., Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature, 2000. 408(6808): p. 57-63. 42. Monteleone, G., F. Pallone, and T.T. Macdonald, Interleukin-21 (IL-21)-mediated pathways in T cell-mediated disease. Cytokine & Growth Factor Reviews, 2009. 20(2): p. 185-191. 43. Coquet, J.M., et al., IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. Journal of Immunology, 2007. 178(5): p. 2827-2834. 44. Leonard, W.J. and R. Spolski, Interleukin-21: A modulator of lymphoid proliferation, apoptosis and differentiation. Nature Reviews Immunology, 2005. 5(9): p. 688-698. 45. Nurieva, R., et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007. 448(7152): p. 480-3. 46. Korn, T., et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007. 448(7152): p. 484-7. 47. Zhou, L.A., et al., IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology, 2007. 8(9): p. 967-974. 48. Zeng, R., et al., Synergy of IL-21 and IL-15 in regulating CD8(+) T cell expansion and function. Journal of Experimental Medicine, 2005. 201(1): p. 139-148. 49. Ozaki, K., et al., Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol, 2004. 173(9): p. 5361-71. 50. Pene, J., et al., Cutting edge: IL-21 is a switch factor for the production of IgG(1) and IgG(3) by human B cells. Journal of Immunology, 2004. 172(9): p. 5154-5157. 51. Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. Journal of Immunology, 2005. 175(12): p. 7867-7879. 52. Monteleone, G., F. Pallone, and T.T. MacDonald, Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses. Trends in Immunology, 2008. 29(6): p. 290-294. 53. Ozaki, K., et al., A critical role for IL-21 in regulating immunoglobulin production. Science, 2002. 298(5598): p. 1630-4. 54. Jin, H., et al., Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol, 2004. 173(1): p. 657-65. 55. Mehta, D.S., et al., IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol, 2003. 170(8): p. 4111-8. 56. Bryant, V.L., et al., Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol, 2007. 179(12): p. 8180-90. 57. Harada, M., et al., IL-21-induced Bepsilon cell apoptosis mediated by natural killer T cells suppresses IgE responses. J Exp Med, 2006. 203(13): p. 2929-37. 58. Kishida, T., et al., IL-21 induces inhibitor of differentiation 2 and leads to complete abrogation of anaphylaxis in mice. J Immunol, 2007. 179(12): p. 8554-61. 59. Suto, A., et al., IL-21 inhibits IFN-gamma production in developing Th1 cells through the repression of Eomesodermin expression. J Immunol, 2006. 177(6): p. 3721-7. 60. Wurster, A.L., et al., Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. Journal of Experimental Medicine, 2002. 196(7): p. 969-977. 61. Bettelli, E., M. Oukka, and V.K. Kuchroo, T-H-17 cells in the circle of immunity and autoimmunity. Nature Immunology, 2007. 8(4): p. 345-350. 62. Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature, 2006. 441(7090): p. 235-238. 63. Nurieva, R., et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007. 448(7152): p. 480-U8. 64. Korn, T., et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007. 448(7152): p. 484-U9. 65. Ozaki, K., et al., A critical role for IL-21 in regulating immunoglobulin production. Science, 2002. 298(5598): p. 1630-1634. 66. Suto, A., et al., Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C epsilon transcription of IL-4-stimulated B cells. Blood, 2002. 100(13): p. 4565-4573. 67. Harada, M., et al., IL-21-induced B epsilon cell apoptosis mediated by natural killer T cells suppresses IgE responses. Journal of Experimental Medicine, 2006. 203(13): p. 2929-2937. 68. Pene, J., et al., IFN-gamma-mediated inhibition of human IgE synthesis by IL-21 is associated with a polymorphism in the IL-21R gene. Journal of Immunology, 2006. 177(8): p. 5006-5013. 69. Hiromura, Y., et al., IL-21 administration into the nostril alleviates murine allergic rhinitis. Journal of Immunology, 2007. 179(10): p. 7157-7165. 70. Frohlich, A., et al., IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood, 2007. 109(5): p. 2023-2031. 71. Warnock, J.N., C. Daigre, and M. Al-Rubeai, Introduction to viral vectors. Methods Mol Biol, 2011. 737: p. 1-25. 72. Yang, Y., et al., Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol, 1995. 69(4): p. 2004-15. 73. Xing, Z., et al., IL-12-independent Th1-type immune responses to respiratory viral infection: requirement of IL-18 for IFN-gamma release in the lung but not for the differentiation of viral-reactive Th1-type lymphocytes. J Immunol, 2000. 164(5): p. 2575-84. 74. Cotter, M.J., A.K. Zaiss, and D.A. Muruve, Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J Virol, 2005. 79(23): p. 14622-31. 75. Chang, T.C., et al., Stabilization of hypoxia-inducible factor-1 alpha by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. Journal of Biological Chemistry, 2005. 280(44): p. 36567-36574. 76. Liu, F.T., H. Goodarzi, and H.Y. Chen, IgE, Mast Cells, and Eosinophils in Atopic Dermatitis. Clinical Reviews in Allergy & Immunology, 2011. 41(3): p. 298-310. 77. Pesce, J., et al., The IL-21 receptor augments Th2 effector function and alternative macrophage activation. Journal of Clinical Investigation, 2006. 116(7): p. 2044-2055. 78. Barker, B.R., et al., IL-21 induces apoptosis of antigen-specific CD8+ T lymphocytes. J Immunol, 2007. 179(6): p. 3596-603. 79. Nguyen, H. and N.P. Weng, IL-21 preferentially enhances IL-15-mediated homeostatic proliferation of human CD28+ CD8 memory T cells throughout the adult age span. J Leukoc Biol, 2010. 87(1): p. 43-9. 80. Novy, P., et al., Intrinsic IL-21 Signaling Is Critical for CD8 T Cell Survival and Memory Formation in Response to Vaccinia Viral Infection. Journal of Immunology, 2011. 186(5): p. 2729-2738. 81. Spolski, R., et al., IL-21 mediates suppressive effects via its induction of IL-10. J Immunol, 2009. 182(5): p. 2859-67. 82. Attridge, K., et al., IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood, 2012. 119(20): p. 4656-64. 83. Murphy, K.M., A.B. Heimberger, and D.Y. Loh, Induction by Antigen of Intrathymic Apoptosis of Cd4+Cd8+Tcrlo Thymocytes Invivo. Science, 1990. 250(4988): p. 1720-1723. 84. Kimura, M. and M. Obi, Ovalbumin-induced IL-4, IL-5 and IFN-gamma production in infants with atopic dermatitis. International Archives of Allergy and Immunology, 2005. 137(2): p. 134-140. 85. Yamashita, M., et al., T cell receptor-induced calcineurin activation regulates T helper type 2 cell development by modifying the interleukin 4 receptor signaling complex. Journal of Experimental Medicine, 2000. 191(11): p. 1869-1879. 86. Yamashita, M., et al., T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(3): p. 1024-1029. 87. Meisel, C., et al., Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking. J Immunol, 2001. 166(5): p. 3143-50. 88. Gomes, B., et al., The cGMP/protein kinase G pathway contributes to dihydropyridine-sensitive calcium response and cytokine production in TH2 lymphocytes. Journal of Biological Chemistry, 2006. 281(18): p. 12421-12427. 89. Wenzel, S.E., et al., Bronchoscopic evaluation of severe asthma - Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med, 1997. 156(3): p. 737-743. 90. Fahy, J.V., Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc, 2009. 6(3): p. 256-9. 91. Woodruff, P.G., et al., Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. Journal of Allergy and Clinical Immunology, 2001. 108(5): p. 753-758. 92. Pelletier, M., et al., Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 2010. 115(2): p. 335-343. 93. Wilson, R.H., et al., Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness. Am J Respir Crit Care Med, 2009. 180(8): p. 720-730. 94. Cosmi, L., et al., Th17 cells: new players in asthma pathogenesis. Allergy, 2011. 66(8): p. 989-998. 95. Strengell, M., et al., IL-21 enhances SOCS gene expression and inhibits LPS-induced cytokine production in human monocyte-derived dendritic cells. J Leukoc Biol, 2006. 79(6): p. 1279-1285. 96. Hebenstreit, D., et al., SOCS-1 and SOCS-3 inhibit IL-4 and IL-13 induced activation of Eotaxin-3/CCL26 gene expression in HEK293 cells. Molecular Immunology, 2005. 42(3): p. 295-303. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65111 | - |
| dc.description.abstract | 過敏性呼吸道疾病是一種慢性發炎疾病,造成的原因為Th2免疫反應失衡。其機制是由於病人呼吸道對特定的外來物質(過敏原)產生過敏反應,導致過敏原專一性Th2細胞的活化、Th2相關的細胞激素IL-4、IL-5和IL-13大量產生、血管擴張、平滑肌收縮、黏液以及抗體IgE的產生,造成呼吸道發炎。先前的文獻指出,在過敏性鼻炎動物模式中,IL-21藉由降低B細胞產生IgE的能力減緩過敏性鼻炎的症狀。但IL-21是否影響Th2細胞則尚未明瞭。在此實驗中,我們藉體內與體外試驗探討IL-21是否調控Th2細胞的分化與Th2免疫反應。
首先,我們探討IL-21是否影響Th2細胞分化。將DO11.10小鼠的CD4 T細胞以Th2條件培養時同時加入不同濃度之rmIL-21後分析培養細胞分泌的Th2相關細胞激素,結果顯示,加入IL-21培養的細胞其分泌Th2相關細胞激素的能力降低,其中以IL-4下降最為明顯,且Th2細胞激素的下降並非IL-21造成細胞死亡所致。再者,利用在小鼠致敏前給予Ad-mIL-21觀察其於Th2-derived過敏性動物模式對Th2細胞分化的影響。與施打Ad-mock的小鼠相比,接受Ad-mIL-21的小鼠支氣管肺泡沖洗液中IL-4、IL-5與IL-13濃度亦顯著下降。 接著,我們探究IL-21是否調控Th2免疫反應。以不同濃度rmIL-21刺激小鼠Th2條件培養後的細胞,發現細胞分泌的Th2相關細胞激素(IL-4、IL-5與IL-13)降低。再者,利用給予已致敏小鼠Ad-mIL-21後,支氣管肺泡沖洗液中IL-4濃度顯著下降。進一步分析發現,IL-4濃度的下降並非IL-21造成CD4 T細胞死亡所致而可能為藉由降低GATA3的表現而抑制細胞分泌IL-4。最後Th2相關細胞激素受到IL-21影響而降低的情形同樣能在以不同濃度rhIL-21刺激過敏性疾病病人分離出之周邊血單核球細胞的實驗中觀察到。 綜合以上實驗,IL-21能抑制Th2細胞的分化,並抑制Th2細胞的功能。其可能的機制為IL-21藉由負向調控GATA3與降低IL-4於肺臟中之表現量抑制過度的Th2免疫反應,並非IL-21造成Th2細胞死亡導致Th2相關細胞激素減少。 | zh_TW |
| dc.description.abstract | Allergic airway disease is a chronic inflammation, which is regarded as Th2 weighted imbalance. After allergens or parasitic helminthes stimulation, the phenomena of eosinophil increase, mast cell activation, immunoglobulin E (IgE) antibody production and cytokines such as interleukin (IL)–4, IL-5, and IL-13 secreted by Th2 cells are contributed to allergic disease. Previous study suggests that IL-21 administration into the nostril alleviates murine allergic rhinitis by means of reducing the production of IgE. However, whether IL-21 affects Th2 cells is still unknown. In this study, we investigated the role of IL-21 in the regulation of Th2 cell differentiation and Th2 immune responses in vitro and in vivo.
First, we explored whether IL-21 affects the Th2 cell differentiation. The secretion of IL-4 from DO11.10 CD4 T cells which were cultured with different concentration of IL-21 under Th2 polarizing condition was decreased. In addition, we confirmed that the decreased level of IL-4 was not caused by IL-21-inducing apoptosis of cells. Furthermore, we also observed the significantly decreased level of Th2-associated cytokines in the BALF of OVA/Alumimmunized mice which were received Ad-mIL-21 before OVA immunization. Besides, the administration of Ad-mIL-21 reduced IL-4 production in the BALF of OVA/Alum immunized mice. Furthermore, IL-21 administration decreased the expression of transcription factor GATA3 of T cells. In conclusion, our results demonstrated that IL-21 decreased the Th2 cell differentiation and Th2 immune response. Moreover, the effects of IL-21 in the down regulation of Th2 cells were resulted in the down-regulation of GATA3 but not the apoptosis of Th2-producing cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:25:35Z (GMT). No. of bitstreams: 1 ntu-101-R99424027-1.pdf: 2267554 bytes, checksum: 18c26b2110b5fe093120a723f6ddf60d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 縮寫對照表 vi 第一章 研究背景 1 1.1 呼吸道發炎反應(airway inflammatory response) 1 1.1.1 樹突細胞(dendritic cells,DCs) 1 1.1.2 呼吸道上皮細胞(airway epithelial cells) 1 1.1.3 肥大細胞(mast cells) 2 1.1.4 嗜酸性球(eosinophils) 2 1.1.5 B淋巴球(B lymphocytes) 3 1.1.6 T淋巴球(T lymphocytes) 3 1.2 過敏機轉(Allergic mechanism) 4 1.2.1 CD4+ T細胞免疫反應 4 1.2.2 第二型輔助型T細胞免疫反應之起源(The orgin of Th2 immune response) 4 1.2.3 致敏(sensitization)與記憶(memory) 5 1.2.4 挑戰期(Challenge phase) 5 1.2.5 晚期(Late phase response) 6 1.3 介白素-21(Interleukin-21) 6 1.3.1 介白素-21與介白素-2家族 6 1.3.2 介白素-21於先天免疫與後天免疫之調控 6 1.3.3 介白素-21於B細胞功能上的調控 7 1.3.4 介白素-21與Th1免疫反應 7 1.3.5 介白素-21與Th17免疫反應 8 1.3.6 介白素-21與調控型T細胞(regulatory T cells)之關係 8 1.3.7 介白素-21與Th2免疫反應(過敏反應) 8 1.4 基因療法(Gene therapy) 9 1.4.1 腺病毒載體(Adenovirus vector) 9 1.4.2 腺病毒載體與細胞性免疫反應 10 1.4.3 腺病毒載體與嗜中性球之浸潤 10 1.5 研究目的 10 第二章 實驗材料與方法 11 2.1 探討rmIL-21於體外試驗(in vitro)中對Th2細胞之影響 11 2.1.1 脾臟細胞之純化 11 2.1.2 CD4 T細胞分離純化 11 2.1.3 Th2-derived培養環境 12 2.1.4 流式細胞儀(flow cytometry) 分析細胞表面抗原與細胞內細胞激素 12 2.1.5 細胞死亡之觀察 13 2.2 細胞RNA之萃取 13 2.3 利用RNA反轉錄成cDNA之過程 14 2.4 以腺病毒載體(Adenovirus Vector)系統表現小鼠IL-21 14 2.4.1 小鼠IL-21基因片段與pShuttle-Hpgk.B1質體製備 14 2.4.1.1 聚合酶鏈鎖反應(Polymerase chain reaction;PCR) 15 2.4.1.2 小鼠基因片段與質體接合之製備 15 2.4.1.3 質體轉殖(transformation)入E.coli DH5α 15 2.4.1.4 質體DNA之萃取 16 2.4.1.5 質體轉染(transfection)至COS-1細胞 16 2.4.2 pShuttle-Hpgk.B1質體與pAdEasy-1質體進行同源重組(homologous recombination) 16 2.4.2.1 篩選成功重組之pAdEasy-1- pShuttle-Hpgk.B1 16 2.4.3 將重組之質體轉染至AD-293細胞 17 2.5 重組腺病毒增量(amplify)與置備 17 2.5.1 病毒感染(infection)與培養 17 2.5.2 病毒增量 17 2.5.3 病毒純化 18 2.5.4 病毒定量 18 2.6 實驗用小鼠 18 2.7 Th2-mediated過敏反應動物模式 19 2.7.1 血清樣品之收集 19 2.7.2 以Enzyme linked immunosorbent assay (ELISA)偵測血清OVA-specific IgE 20 2.7.3 小鼠支氣管肺泡沖洗液(bronchoalveolar lavage fluid;BALF)之收集與處理 20 2.7.4 小鼠支氣管肺泡沖洗液之細胞離心與染色 21 2.7.5 小鼠支氣管肺泡沖洗液之細胞分類 21 2.7.6 小鼠支氣管肺泡沖洗液淋巴球細胞之組成 21 2.7.8 ELISA偵測細胞激素(IL-4、IL-5、IL-10、IL-13、IL-17、IL-21、IFN-γ與TGF-β) 22 2.7.9 以即時定量反轉錄聚合酶連鎖反應偵測GATA3 22 2.8 探討rhIL-21刺激人類PBMC之情形 23 2.8.1 病人檢體 23 2.8.2 由全血分離 PBMC (Peripheral blood mononuclear cell) 23 2.8.3 以PBMC體外刺激(in vitro stimulation) 24 2.8.4 以Enzyme linked immunosorbent assay(ELISA) 測量上清液細胞激素之濃度 24 2.9 繪圖與統計分析 24 第三章 結果 25 3.1 相較於Th0細胞,經Th2條件培養的細胞能表現較高的IL-4 / IFN-γ比例 25 3.2 IL-21抑制Th2細胞的分化而促進Th17細胞的生成 25 3.3 IL-21不會造成預分化成Th2的細胞走向死亡 26 3.4 製備攜帶小鼠IL-21的重組腺病毒 26 3.5 Ad-mIL-21能於小鼠體內表現IL-21 27 3.6 先接受Ad-mIL-21再以OVA致敏之小鼠其肺臟中IL-4、IL-5、IL-13與IL-17的產量顯著下降 27 3.6.1 先接受Ad-mIL-21再以OVA致敏之小鼠血清中 OVA 特異性 IgE未受影響 27 3.6.2 先接受Ad-mIL-21再以OVA致敏之小鼠肺臟內嗜中性球浸潤的比例上升 28 3.6.3 先接受Ad-mIL-21再以OVA致敏之小鼠肺臟內細胞激素IL-4、IL-5、IL-13與IL-17之產量達到顯著下降 28 3.7 IL-21直接地抑制Th2條件培養的細胞分泌Th2相關細胞激素的能力 29 3.8 IL-21不會造成Th2條件培養的細胞走向死亡 30 3.9 接受Ad-mIL-21的OVA致敏小鼠雖有發炎反應但CD4 T細胞分泌IL-4的能力下降 30 3.9.1 以OVA致敏之小鼠於接受Ad-mIL-21後,血清中 OVA 特異性 IgE未受影響 30 3.9.2 OVA致敏之小鼠於接受Ad-mIL-21後,並無影響肺臟內浸潤細胞數與各個浸潤細胞之比例 30 3.9.3 OVA致敏之小鼠於接受Ad-mIL-21後,其肺臟內IL-4的濃度下降 31 3.10 人類周邊血單核球細胞於IL-21刺激後分泌IL-5的能力下降而IL-17的濃度升高 32 第四章 討論 33 圖 38 參考文獻 62 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | IL-21 | zh_TW |
| dc.subject | IL-4 | zh_TW |
| dc.subject | Th2細胞 | zh_TW |
| dc.subject | 過敏性疾病 | zh_TW |
| dc.subject | 支氣管肺泡沖洗液 | zh_TW |
| dc.subject | GATA3 | zh_TW |
| dc.subject | broncho-alveolar lavage fluid (BALF) | en |
| dc.subject | Th2 cells | en |
| dc.subject | allergic disease | en |
| dc.subject | IL-21 | en |
| dc.subject | IL-4 | en |
| dc.subject | GATA3 | en |
| dc.title | IL-21於調控Th2細胞分化與Th2免疫反應之角色 | zh_TW |
| dc.title | The roles of IL-21 in the regulation of Th2 cell differentiation and Th2 immune responses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅倩,李岳倫,張純榮 | |
| dc.subject.keyword | IL-21,IL-4,Th2細胞,過敏性疾病,支氣管肺泡沖洗液,GATA3, | zh_TW |
| dc.subject.keyword | IL-21,IL-4,Th2 cells,allergic disease,broncho-alveolar lavage fluid (BALF),GATA3, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
