請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65102完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋家驥 | |
| dc.contributor.author | Yu-Tsung Lin | en |
| dc.contributor.author | 林育聰 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:25:12Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | [1] C. Qiu, X. Zhang, and Z. Liu, “Far-field imaging of acoustic waves by a two-dimensional sonic crystal”, Phys. Rev. B Vol. 71, No. 5, 054302 (2005)
[2] J. Li, Z. Liu, and C. Qiu, “Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal”, Phys. Rev. B Vol. 73, No. 5, 054302 (2006) [3] M. Torres, and F. R. Montero de Espinosa, “Ultrasonic band gaps and negative refraction”, Ultrasonics Vol. 42, No. 1-9, pp. 787-790 (2004) [4] X. Zhang, and Z. Liu,“Negative refraction of acoustic waves in two-dimensional phononic crystals”, Appl. Phys. Lett. Vol. 85, No. 2, pp. 341-343 (2004) [5] M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Negative birefraction of acoustic waves in a sonic crystal”, Nat. Mater. Vol. 6, No. 10, pp. 744-748 (2007) [6] M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen and P. Sheng, “Negative-refraction 111 imaging with two-dimensional phononic crystals”, Phys. Rev. B Vol. 72, No. 6, 064306 (2005) [7] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites”, J. Acoust. Soc. Am. Vol. 101, No. 3, pp. 1256-1261 (1997) [8] M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders”, J. Appl. Phys. Vol. 84, No. 6, pp. 3026-3030 (1998) [9] T. Miyashita, “Experimental study of a sharp bending wave-guide constructed in a sonic-crystal slab of an array of short aluminum rods in air”, IEEE Ultransonics 109 Symposium, pp. 946-949 (2004) [10] Y. J. Cao and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in two-dimensional phononic crystals”, Mod. Phys. Lett. B Vol. 21, No. 22, pp. 1479-1488 (2007) [11] J. Chen, J. C. Cheng, and B. Li, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect”, Appl. Phys. Lett. Vol. 91, No. 12, 121902 (2007) [12] C. Qiu, Z. Liu, J. Shi, and C. T. Chan, “Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals”, Appl. Phys. Lett. Vol. 86, No. 22, 224105 (2005) [13] M. Ke, Z. Liu, P. Pang, W. Wang, Z. Cheng, J, Shi, X. Zhao, and W. Wen, “Highly directional acoustic radiation based on asymmetrical two-dimensional phononic crystal resonant cavity”, Appl. Phys. Lett. Vol. 88, No. 26, 263505 (2006) [14] T. T. Wu, C. H. Hsu, and J. H. Sun, “Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional phononic crystal”, Appl. Phys. Lett. Vol. 89, No. 17, 171912 (2006) [15] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides”, Appl. Phys. Lett. Vol. 84 No. 22 pp. 4400-4402(2004) [16] J. H. Sun, and T. T. Wu, “Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method”, Phys. Rev. B 74, 174305 (2006) [17] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders”, Phys. Rev. E 69, 046608 (2004) [18] X. Li, and Z. Liu, “Coupling of cavity modes and guiding modes in two-dimensional phononic crystals”, Solid State Communication. Vol. 133 No. 6 pp. 397-402(2005) [19] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. Vol. 71, No. 13, pp. 2022-2025 (1993) [20] M. S. Kushwaha, “Classical band structure of periodic elastic composites”, Int. J. Mod. Phys. B Vol. 10, No. 9, pp. 977-1094 (1996) [21] COMSOL Multiphysics User’sGuide and Modeling Guide [22] J. N. Reddy, “An introduction to the finite element method 3rd ed. McGraw-Hill”, New York (2006) [23] X. Zhang, and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals”, Appl. Phys. Lett. Vol. 85, No. 2, 341 (2004) [24] M. S. Kushwaha, and B. Djafrari-Rouhani, “Giant sonic stop band in two-dimensional periodic system of fluids”, Journal of Applied Physics Lett Vol. 84, No. 9, 4677 (1998) [25] A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, “Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency”, J. Appl. Phys. Vol. 94, No.3, 1308 (2003) [26] S. C. Lin ,“Ultrasonic Band gap of 2-D phononic crystal”, Master dissertation, Taipei: Nation Taiwan University, Taiwan. (2001) [27] D. N. Chigrin, S. Enoch, C.M. Sotomayor Torres, and G. Tayeb, Opt. Express 11, 1203 (2003) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65102 | - |
| dc.description.abstract | 我們利用破壞完美聲子晶體的週期排列讓其能隙範圍產生缺陷頻帶,利用此種缺陷頻帶去侷限聲波或彈性波傳遞方向。此篇首先討論點缺陷在不同填充率與缺陷外部層數下,在缺陷頻帶頻率中共振腔內部壓力分佈情況,再來結合點缺陷包覆能量特性與線缺陷侷限波傳方向特性,形成三種排列方式雙L型、斜向排列與Y型進行討論。模擬方面我們主要利用有限元素分析軟體COMSOL計算出聲子晶體的能隙區域,因為缺陷頻帶將發生在能隙區域中,而缺陷頻帶又可視為傳導帶,所以我們在聲子晶體內製造不同的缺陷排列型態去分析這些缺陷對於濾波和波傳的影響,實作方面則是設計一組直徑 6mm鋁棒背景為空氣,填充率0.46,正方晶格排列之聲子晶體來進行實驗,模擬與實作結果發現,含有點缺陷聲子晶體可將能量集中侷限於缺陷中,產生共振現象。波導部分,斜向線缺陷波傳效果較為優異,因為點缺陷連續出現的緣故,在波導的路徑上發生連續性局部共振現象,因此能將能量集中傳遞,大幅提升波導效果。 | zh_TW |
| dc.description.abstract | The disruption of the periodic alignment of perfect phononic crystals was introduced to create defective mode around the crevices. This defective mode was used to confine the progressive direction of sound wave or elastic wave. Three alignments, double-L and diagonal alignments, were investigated, and the characteristics of diagonal alignment was used to explore Y-splitter and combiner. For simulation, the finite element based program COMSOL was adopted to calculate the stopband of the phononic crystals. Various defective alignment modes were created in the crystals for the analysis of the influence of these defects on wave filtering and wave transmission. For practice, a group of aluminum bars with a diameter of 6mm and air as the background was designed at a fill rate of 0.46. Phononic crystals of square lattice were used for experiment. Finally, the results from simulation and experiment were compared, we can discover that the point defects can concentrate and limit the energy in the defects, and produce the resonance effect. In the waveguide part, the diagonal alignments defects is better than the double-L. The point defects appeared continuously, and in the path of wave guide occurred continuously partial resonance effect. Thus, it can concentrate the energy and then transfer. As the result, we can improve the waveguide effect significantly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:25:12Z (GMT). No. of bitstreams: 1 ntu-101-R99525093-1.pdf: 3945644 bytes, checksum: 09c3604437d69ceff65e2e02ff5cf3ac (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄 I
摘要 III Abstract IV 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1前言 1 1-2 研究動機 2 1-3文獻回顧 2 1-3-1聲子晶體異常折射 2 1-3-2 含缺陷聲子晶體 3 1-4本文架構 4 第二章 基礎理論 7 2-1 流體中的波動方程式 7 2-2 倒晶格空間 9 2-3 布里淵區(Brillouin Zones) 11 2-4 有限元素法 12 2-4-1 聲學模組之有限元素法推導[21, 22] 13 2-4-2 邊界條件(boundary condition) 15 2-4-3 結構模組與聲學模組之耦合[23] 16 2-5 平面波展開法 17 第三章 聲子晶體共振腔 28 3-1 聲子晶體模擬參數 28 3-1-1 完美聲子晶體能隙計算 29 3-2 含點缺陷聲子晶體 32 3-2-1 共振腔壓力場模擬 32 3-2-2 含點缺陷的穿透頻帶 34 3-2-3 填充率與外部層數跟共振腔中心壓力關係 35 3-3 聲子晶體共振腔結果與討論 38 第四章 聲子晶體共振腔波導 40 4-1 聲子晶體共振腔模擬參數 40 4-2 線缺陷波導安裝濾波共振器 43 4-2-1 線缺陷波導模擬 43 4-2-2 線缺陷安裝點缺陷 46 4-2-3 傳統L型導與改良式L型波導比較 48 4-2-4 L型波導效果與外部層數關係 54 4-2-5 雙L型波導與斜向線缺陷波導 56 4-2-6 Y型分離器與合併器 62 4-3 聲子晶體實驗架構 67 4-3-1 L型波導與外部層數關係實驗 68 4-3-2 雙L型、斜向線缺陷與Y型實驗 69 第五章 結果與討論 72 5-1 未來展望 73 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 波導 | zh_TW |
| dc.subject | 聲子晶體 | zh_TW |
| dc.subject | 共振腔 | zh_TW |
| dc.subject | Phononic Crystal | en |
| dc.subject | Resonant Cavity | en |
| dc.subject | Waveguide | en |
| dc.title | 利用聲子晶體探討點缺陷與共振腔波導現象 | zh_TW |
| dc.title | Resonant Cavity Waveguide and Point Defects by Phononic Crystal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅如燕,林益煌,王昭男,劉倫偉 | |
| dc.subject.keyword | 聲子晶體,共振腔,波導, | zh_TW |
| dc.subject.keyword | Phononic Crystal,Resonant Cavity,Waveguide, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
