Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北
dc.contributor.authorTze-Min Shenen
dc.contributor.author沈澤旻zh_TW
dc.date.accessioned2021-06-16T23:24:38Z-
dc.date.available2012-08-03
dc.date.copyright2012-08-03
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation[1] K. Lim, S. Pinel, M. F. Davis, A. Sutono, C.-H. Lee, D. Heo, A. Obatoynbo, J. Laskar, E. M. Tentzeris, and R. Tummala, “RF-system-onpackage (SOP) for wireless communications,” IEEE Microwave Mag., vol. 3, no. 1, pp. 88–99, Mar. 2002.
[2] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 2718–2724, Dec. 2004.
[3] T. Baras and A. F. Jacob, “Manufacturing reliability of LTCC millimeter- wave passive components,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2574–2581, Nov. 2008.
[4] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438–2443, Dec. 1998.
[5] K. Wu, “Integration and interconnect techniques of planar and nonplanar structures for microwave and millimetre-wave circuits—Current status and future trend,” in Asia–Pacific Microw. Conf., Taipei, Taiwan, Dec., 2001, pp. 411–416.
[6] D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguides,” in IEEE MTT-S Int. Microwave Symp. Dig., Feb. 2001, pp. 619–622.
[7] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Compon. Lett., vol. 11, pp. 68–70, Feb. 2001.
[8] R. Levy, “Theory of direct-coupled-cavity filters,” IEEE Trans. Microw. Theory Tech., vol. 15, no. 6, pp. 340–348, June 1967.
[9] R. Levy, R. V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 783–793, March 2002.
[10] R. Vahldieck, J. Bornemann, F. Arndt, and D. Grauerholz, “Optimized waveguide E-plane metal insert filters for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 31, no. 1, pp. 65–69, Jan. 1983.
[11] Y.-C. Shih and T. Itoh, “E-plane filters with finite-thickness septa,” IEEE Trans. Microw. Theory Tech., vol. 31, no. 12, pp. 1009–1013, Dec. 1983.
[12] A. E. William, “A four-cavity elliptic waveguide filter,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 12, pp. 1109–1114, Dec. 1970.
[13] A. E. Atia and A. E. William, “Narrow-bandpass waveguide filters,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 12, pp. 1109–1114, Dec. 1970.
[14] G. F. Craven and C. K. Mok, “The desing of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 3, pp. 295–308, March 1971.
[15] M. Ito, K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata, “A 60-GHz-band planar dielectric waveguide filter for flip-chip modules,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2431-2436, Dec. 2001.
[16] D. Deslands and K. Wu, “Single-substrate integration technique of planar circuits and waveguide filters,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 593-596, Feb. 2003.
[17] D. Stephens, P. R. Young, and I. D. Robertson, “Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3832-3838, Dec. 2005.
[18] L. Harle and L. P. B. Katehi, “Avertically integrated micromachined filter,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2063-2068, Sep. 2002.
[19] J.-H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3817-3824, Dec. 2005.
[20] R. Levy and S. B. Chon, “A history of microwave filter research, design, and development,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1055-1067, Sept. 1984.
[21] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui, “Multilayered substrate integrated waveguide (MSIW) elliptic filter,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 95–97, Feb. 2005.
[22] J. A. Ruiz-Cruz, M. A. E. Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang, “Canonical ridge waveguide filters in LTCC or metallic resonators,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 174-182, Jan. 2005.
[23] T.-M. Shen, C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of vertically stacked waveguide filters in LTCC,” IEEE Trans. on Microwave Theory and Tech., vol. 55, pp. 1771-1779, Aug. 2007.
[24] J. A. R-Cruz, K. A. Zaki, J. R. M-Garai, and J. M. Rebollar, “Rectangular waveguide elliptic filters with capacitive and inductive irises and integrated coaxial excitation,” IEEE MTT-S Int. Microwave Symp. Dig., pp.269-272, June 2005.
[25] C.-C. Chuang, R.-B. Wu, and T.-M. Shen, “Vertical coupling structure for non- adjacent resonators,” US Patent 07,675,391, Mar. 2010.
[26] X.-P. Chen , W. Hong , T. Cui , Z. Hao and K. Wu 'Substrate integrated waveguide elliptic filter with transmission line inserted inverter,' Electron. Lett., vol. 41, pp. 851-852 , July 2005.
[27] X. P. Chen and K. Wu, “Substrate integrated waveguide cross-coupled filter with negative coupling structure,” IEEE Trans. Microwave Theory Tech., vol. 56, pp. 142-149, Jan. 2008.
[28] B. Pan, Y. Li, M. M. Tentzeris, and J. Papapolymerou, “Surface micromachining polymer-core-conductor approach for high-performance millimeter-wave air-cavity filters integration,” IEEE Trans. Microwave Theory Tech., vol. 56, pp. 959-970, April 2008.
[29] W. Shen, L.-S. Wu, X.-W. Sun W.-Y Yin, J.-F. Mao, “Novel substrate integrated waveguide filters with mixed cross coupling (MCC),” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 701–703, Nov. 2009.
[30] M. J. Hill, J. Papapolymerou, and R. W. Ziolkowski, “High-Q micromachined resonant cavities in a K-band diplexer configuration,” Proc. Inst. Elect. Eng. Microwaves, Antennas Propagat., vol. 148, no. 5, pp. 307-312, Oct. 2001.
[31] J.-H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microwave Theory Tech., vol. 54, pp.2925- 2936, July 2006.
[32] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu, “Planar diplexer for microwave integrated circuits,” Proc. Inst. Elect. Eng. Microwaves, Antennas Propagat., vol. 152, no. 6, pp. 455–459, Dec. 2005.
[33] H. J. Tang, W. Hong, J.-X. Chen, G. Q. Luo, and K. Wu, “Development of millimeter-wave planar diplexers based complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 776-782, April 20075.
[34] K. Deng, W. Che, C. Li, and P. Russer, “Novel microwave diplexer system based on planar waveguide and metamaterial technolgies,” in Asia–Pacific Microw. Conf., Hong Kong, China, Session J2, Dec. 2008.
[35] Y. Dong and T. Itoh, “Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design,” IEEE Microw. Wireless Compon. Lett., vol. 21, pp. 10–12, Jan. 2011.
[36] R. N. Simons, E. G. Wintucky, J. D. Wilson, and D. A. Force, “Ultra-high power and efficiency space traveling-wave tube amplifier power combiner with reduced size and mass for NASA missions,” IEEE Trans. Microwave Theory Tech., vol. 57, pp.582-588, March 2009.
[37] K. Chang, Microwave Ring Circuits and Antennas, John Wiley & Sons, Inc., 1996, ch. 8.
[38] W. A. Tyrell, “Hybrid circuits for microwaves,” Proc. IRE, vol. 35, pp. 1294-1306, Nov. 1947.
[39] W. K. Kahn, “E-plane forked hybrid-T junction,” IRE Trans. Microw. Theory Tech., vol. 4, pp.52-58, Dec. 1955.
[40] P. A. Loth, “Recent advances in waveguide hybrid junctions,” IRE Trans. Microw. Theory and Tech., vol. 4, pp 268-271, Oct 1956.
[41] J. Ritter and F. Arndt, “Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguide structures,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 2450-2456, Dec. 1996.
[42] R. Beyer and U. Rosenberg, “CAD of magic Tee with interior stepped post for high performance designs,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, 1207-1210, June 2003.
[43] Shen, Z. X., C. L. Law, and C. Qian, “Hybrid finite-element-modal- expansion method for matched magic T-junction,,” IEEE Trans. Magnetics, vol. 38, pp. 385-388, March 2002.
[44] K. C. Hwang, “Design and optimization of a broadband waveguide magic-T using a stepped conducting cone,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 539-541, Sept. 2009.
[45] F. F. He, K. Wu, W. Hong, H. J. Tang, H. B. Zhu, and J. X. Chen, “A planar magic-T using substrate integrated circuits concept,” IEEE Microw. Wireless Comp. Lett., vol. 18, pp. 386–388, June 2008.
[46] M. Liu and F. Feng, “A novel hybrid planar SIW magic Tee,” in Proc. Asia-Pacific Microwave Conf., Hong Kong, China, Session B2, Dec. 2008.
[47] L. Han, K. Wu, and S. Winkler, “Singly balanced mixer using substrate integrated waveguide magic-T structure,” in Proc. Eur. Wireless Tech. Conf., Amsterdam, Netherlands, Oct. 2008, pp. 9-12.
[48] T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “A laminated waveguide magic-T in multilayer LTCC,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, USA, Jun. 2009, pp. 713-716.
[49] W. Feng, W. Che, and K. Deng, “Compact planar magic-T using E-plane substrate integrated waveguide (SIW) power divider and slotline transition,” IEEE Microw. Wireless Comp. Lett., vol. 20, pp. 331–333, June 2010.
[50] F. F. He, K. Wu, W. Hong, L. Han, X. P. Chen, “A planar magic-T using substrate integrated circuits concept and its mixer applications,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 72-79, Jan. 2011.
[51] S. M. Sherman, Monopulse Principles and Techniques, Norwood, MA: Artech House, 1986, pp. 67-84.
[52] T.-Y. Huang, T.-M. Shen, and R.-B. Wu, “A system-on-package integration of X-band FMCW sensor RF Frontend Module,” in Asia–Pacific Microw. Conf., Singapore, Dec., 2009, pp. 147–150.
[53] H. Uchida, N. Yoneda, Y. Konishi, and S. Makino, “Bandpass directional couplers with electromagnetically-coupled resonators,” in IEEE MTT-S Int. Microwave Symp. Dig., 2006, pp. 1563-1566.
[54] W.-H. Wang, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Miniaturized rat-race coupler with bandpass response and good stopband rejection,” in IEEE MTT-S Int. Microwave Symp., Dig., 2009, pp. 709-712.
[55] W.-L. Chang, T.-Y. Huang, T.-M. Shen, B.-C. Chen, and R.-B. Wu, “Design of compact branch-line coupler with coupled resonators,” in Asia–Pacific Microw. Conf., Bangkok, Thailand, Dec., 2007, pp. 1375–1378.
[56] Y. C. Leong, K. S. Ang, and C. H. Lee, “A derivation of a class of 3-port baluns from symmetrical 4-port networks,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 1165–1168.
[57] K. S. Ang, Y. C. Leong and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1009–1017, Mar. 2003.
[58] L. K. Yeung and K. L. Wu, “An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 1512–1518, Apr. 2006.
[59] K. T. Chen and S. J. Chung, “A novel compact balanced-to-unbalanced low-temperature co-fired ceramic bandpass filter with three coupled lines configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 1714–1720, Jul. 2008.
[60] C.-H. Wu and C.-H. Chen, “Balanced-to-unbalanced bandpass filters and the antenna application,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2474–2482, Nov. 2008.
[61] C.-L. Tsai and Y.-S Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low-temperature co-fired ceramic technology,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2902–2912, Dec. 2008.
[62] M. Tamura, T. Ishizaki, and M. Hoft, “Design and analysis of vertical split ring resonator and its application to unbalanced-balanced fitler,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 157–164, Jan. 2010.
[63] T. Yang, M. Tumura, and T. Itoh, “Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 390–402, Feb. 2010.
[64] C.-H. Wu and C.-H. Chen, “Compact LTCC bandpass 180° hybrid using lumped single-to-differential and single-to-common bandpass filters,“ in IEEE MTT-S Int. Microwave Symp., Dig., 2009, pp. 709-712.
[65] I.-H. Lin, M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1142–1149, Apr. 2004.
[66] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1207–1215, May 2009.
[67] C.-L. Hsu, C.-W. Chang, and J.-T. Kuo, “Design of dual-band microstrip rat race coupler with circuit miniaturization,” IEEE MTT-S Int. Microw. Symp. Dig. , 2007, pp. 177-180.
[68] C.-L. Hsu, J.-T. Kuo, and C.-W. Chang, “Miniaturized dual-band hybrid couplers with arbitrary power division ratios,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 149–156, Jan. 2009.
[69] L. K. Yeung and K.-L Wu, “A dual-band coupled-line balun filter,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 2406–2411, Nov. 2007.
[70] X. Gao, L. K. Yeung, and K.-L Wu, “A dual-band balun using partially coupled stepped-impedance coupled-line resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 1455–1460, Nov. 2008.
[71] M. Dishal, “Alignment and adjustment of synchronously tuned multiple- resonator-circuit filters,” Proc. IRE, vol. 39, pp. 1448-1455, Nov. 1951.
[72] D. M. Pozar, Microwave Enginnering, 2nd ed., New York: Wiley, 1998, ch. 8.
[73] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, New York: Wiley, 2001, ch. 3 and ch. 10.
[74] R. E. Collins, Field Theory of Guided Waves, 2nd ed. New York: IEEE Press, 1991, ch. 5.
[75] R. S. Elliott, Antenna Theory and Design. New York: Wiley, 2003, ch. 3.
[76] B. Pan, Y. Li, M. M. Tentzeris, and J. Papapolymerou, “Surface micromachining polymer-core-conductor approach for high-performance millimeter-wave air- cavity filters integration,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 959–970, Apr. 2008.
[77] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: IEEE Press, 2001, ch. 3.
[78] C.-K. Yau, T.-Y. Huang, T.-M Shen, H.-Y. Chien, and R.-B. Wu, “Design of 30GHz transition between microstrip line and substrate integrated waveguide,” in Proc. Asia-Pacific Microw. Conf., Bongkok, Thailand, pp.243-246, Dec. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65093-
dc.description.abstractThis dissertation focuses on the development of laminated waveguide passive components including millimeter-wave filters and multi-function 180° hybrids in multilayer low-temperature co-fired ceramic technology. In the beginning, laminated waveguide bandpass filters with third-order Chebyshev and trisection responses are developed for V- and E-band applications. Cavity resonators are stacked in 3-D space to reduce circuit areas and increase vertical coupling mechanisms. The transmission zero of the trisection filter can be located at either side of the passband, depending on the resonant mode of the cavity on the main coupling path. Besides, a Ka-band waveguide diplexer is also presented with a fourth-order quasi-elliptic response at each band, resulting in good selectivity between the adjacent channels.
Next, a broadband planar laminated waveguide magic-T is proposed. Two orthogonal slots are used to excite even- and odd-symmetric field patterns in the main waveguide, respectively, resulting in a good isolation between each other. The equivalent circuit model is established and the input admittance is estimated to facilitate the structure design for wideband performance. The highly symmetric physical structure provides a broad bandwidth of low imbalance in phase and magnitude, with isolation between sum and difference ports greater than 40dB in the full operation band.
Finally, laminated waveguide magic-Ts with imbedded bandpass filter responses are developed for single and dual-band applications. In the single band design, the cavity with degenerate, but orthogonal resonant modes, i.e. TE102 and TE201 modes, is utilized to provide the in-phase and out-of-phase responses of the magic-T. On the other hand, the dual-band magic-T design exploits two kinds of overmoded cavities to achieve the sum and difference functions, respectively. The operated frequency bands are controlled by adequately choosing geometric shape of laminated waveguide cavity resonators. The filter responses are synthesized by cascading the cavities with proper coupling strengths according to the filter specification. Two design examples of the magic-Ts with a single-band third-order Chebyshev response and a dual-band second- order Chebyshev response are given to verify the proposed concepts.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:24:38Z (GMT). No. of bitstreams: 1
ntu-101-D95942011-1.pdf: 2754680 bytes, checksum: 805b1fd406ecd39786d1af6893436fea (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Contributions 7
1.4 Organization of the Dissertation 8
Chapter 2 Design Methodologies of Magic-T and Microwave Filters 10
2.1 Magic-T Design Technique 10
2.2 Coupled-Resonator Filter Design Technique 13
2.2.1 Chebyshev Function Filter 14
2.2.2 Quasi-Elliptic Function Filter 17
2.2.3 Coupling Coefficients 19
2.2.4 External Quality Factor 24
Chapter 3 Basic Concepts of Laminated Waveguide 26
3.1 Modal Analysis of Rectangular Waveguide 27
3.2 Waveguide Excitation 32
3.3 Waveguide Cavity 34
3.4 Quality Factor 37
3.5 Coupling Structures 40
Chapter 4 Millimeter-Wave Filters and Diplexer 44
4.1 Coupling and Feeding Structures 45
4.1.1 Magnetic Coupling by Broad-wall Slots 45
4.1.2 Magnetic Coupling by Narrow-wall Window 47
4.1.3 Electric Coupling by Broad-wall Aperture 47
4.1.4 Feeding Structure 49
4.2 Third-Order Chebyshev Bandpass Filter 51
4.3 Third-Order Trisection Bandpass Filters 55
4.4 Diplexer 64
Chapter 5 Planar Waveguide Magic-T 70
5.1 Planar Magic-T Junction 71
5.2 Design of Slot Coupling Structures 73
5.2.1 Input Conductance of Slot Coupling 74
5.2.2 I-Shaped Slot for In-Phase Function 76
5.2.3 C-Shaped Slot for Out-of-Phase Function 78
5.3 Simulation and Experimental Validation 81
Chapter 6 Waveguide Magic-Ts with Filter Responses 88
6.1 Magic-T with Bandpass Filter Response 88
6.1.1 Degenerated-Mode Cavity Concept 89
6.1.2 Magic-T and Filter Functions Integration 90
6.1.3 Magic-T with Third-Order Chebyshev Filter Response 93
6.1.4 Simulation and Experimental Validation 102
6.2 Magic-T with Dual-Band Filter Response 107
6.2.1 Overmoded Cavity Concept 107
6.2.2 Integration of Dual-Band Magic-T and Filter Functions 109
6.2.3 Dual-Band Magic-T with Second-Order Chebyshev Filter Response 110
6.2.4 Simulation Results 111
Chapter 7 Conclusions 116
7.1 Summary 116
7.2 Future Works 119
REFERENCE 120
PUBLICATION LIST 129
dc.language.isoen
dc.subject陶瓷zh_TW
dc.subject濾波器zh_TW
dc.subject疊層波導zh_TW
dc.subject魔術Tzh_TW
dc.subject多層zh_TW
dc.subjectCeramicsen
dc.subjectmagic-Ten
dc.subjectfilteren
dc.subjectmultilayeren
dc.subjectlaminated waveguideen
dc.title使用多層低溫共燒陶瓷於疊層波導微波被動組件之研製zh_TW
dc.titleDesign of Laminated Waveguide Microwave Passive Components using Multilayer LTCC Technologyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳俊雄,林建民,洪子聖,林丁丙,鍾世忠
dc.subject.keyword陶瓷,濾波器,疊層波導,魔術T,多層,zh_TW
dc.subject.keywordCeramics,filter,laminated waveguide,magic-T,multilayer,en
dc.relation.page130
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved