請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦 | |
| dc.contributor.author | Ming-Hui Chang | en |
| dc.contributor.author | 張明輝 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:23:43Z | - |
| dc.date.available | 2014-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65089 | - |
| dc.description.abstract | 隨著科技的快速發展與進步,機器人系統也逐漸被受到重視。感測器設計的技術與電池殘電量的估測在監控機器人系統中扮演著重要的角色。因此,本論文主要的目的,在發展能夠即時準確監控機器人運動訊號之系統 (如電壓、電流、溫度、角速度及殘電量等)並且應用在本實驗室開發的人型機器人。
為了研發出一具備上述功能之即時監控的感測系統應用於人形機器人,本論文主要可分為兩大研究主題。第一部份將著重於微機電陀螺儀及其感測電路設計與無線溫度感測器設計。在微機電陀螺儀的研究中,頻率匹配是一個很重要的議題,本文設計一具有解耦合結構之單框架微機電陀螺儀(Single-gimbaled Decoupled Gyroscope, SGDG),並利用所提出之回授頻率匹配演算法(Feedback Frequency-Matching Algorithm, FFMA),改善因頻率不匹配造成的訊號衰減,並可利用此方法結合正交誤差消除法(Quadrature Error Cancellation, QEC),減少因製程變異造成機械結構不完美所產生的正交誤差。模擬結果顯示,FFMA與QEC皆可以提高陀螺儀的效能。其次,本論文設計出一個具高線性及高靈敏度的交換電容式陀螺儀感測電路,此一電路架構對寄生電容不敏感。因此,非常適合於陀螺儀的量測,並且可以利用訊號處理將偏差電壓消除。在溫度感測器開發部分,由於之前的設計為根據CMOS正比於絕對溫度(Proportional-To-Absolute Temperature, PTAT)原理,對於量測溫度範圍僅從20度到120度,且該溫度感測器僅提供95%的線性度與2.3 mV/°C的敏感度。因此,為了改善之前設計的量測範圍、線性度及靈敏度,本文設計一個新的CMOS無線感測器晶片,根據CMOS元件具有雙零溫度係數點(Double Zero Temperature Coefficient, DZTC)的特性,此晶片具有兩個電壓参考源、一個電流参考源以及一個溫度感測器。量測範圍從−20度到120度,該溫度感測器可提供97%的高線性度與9.55 mV/°C的高敏感度,此值高於之前設計的感測器4.15倍之多。此晶片亦內建一個八位元逐步逼近式(Successive-Approximation-Register, SAR)類比數位轉換器與433 MHz無線傳輸。此外,為了加快電路及感測器佈局的速度,本文也同時設計一個以基因演算法為基礎的自動佈置系統(Automatic Placement System, APS)來改善佈局設計的效率。 論文第二部分,則提出一個以基因演算法為基礎的電池封裝最佳化設計(Optimization of the Battery Pack, OBP),並且滿足電池平衡及可防止電池過充或過放。實驗結果顯示此方法可以大大減低溫度差異和功率損失以及精確地估測電池殘電量。其次,本論文也提出一個新的電池殘電量估測的整合方法(Modified ECE + EKF)。此方法考慮了自我放電、溫度及電池殘電量對於庫倫效率的影響因素,並結合擴充卡爾曼濾波器(Extended Kalman Filter, EKF)修正的殘電量初始值使其快速收斂至正確值。實驗結果顯示所提出的方法優於其他傳統的演算法,且精確的估測電池殘電量在1%內。 | zh_TW |
| dc.description.abstract | With the advance of science and technology, there has been increasing interest in robotic systems. Two of the most important requirements for monitoring such systems are sensor design technology and battery state of charge (SOC) estimation. This dissertation aims to develop an integrated monitoring system that can accurately monitor motion signals (including voltage, current, temperature, angular velocity, and SOC) in real-time and can be applied to a humanoid robot developed by our laboratory.
The dissertation discusses the development of this integrated system in two major parts. The first focuses on developing intelligent sensors, including the MEMS gyroscope, its sensing circuit, and the wireless temperature sensor. In MEMS gyroscope research, frequency matching is an important issue. The single-gimbaled decoupled gyroscope (SGDG) is presented first, and the proposed feedback frequency-matching algorithm (FFMA) is used to improve signal attenuation caused by frequency mismatch. The FFMA combined quadrature error cancellation algorithm (QEC) can also reduce quadrature error caused by imperfection in the mechanical structure. According to the simulation results, both FFMA and QEC can increase gyroscope performance. Secondly, an ultra linear and high sensitivity switched-capacitor sensing circuit, with parasitic-insensitive topology, can be realized at the same time. This circuit is very suitable for gyroscope measurement and can use signal processing to cancel the voltage offset. As for the wireless temperature sensor, in our previous design, based on the CMOS proportional-to-absolute temperature (PTAT) principle, the temperature sensor can only has the sensitivity of 2.3 mV/°C with linearity up to 95% for the temperature range from 20 °C to 120 °C. In order to improve the measurement range, linearity, and sensitivity of our previous design using the PTAT principle, a combined device based on the principle of CMOS double zero temperature coefficient (DZTC) points is first created at the chip level with two voltage references, one current reference, and one temperature sensor. The results show that the chip can achieve linearity up to 97% with a sensitivity of 9.55 mV/°C, in a wide temperature range from −20 °C to 120 °C. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. An 8-bit successive-approximation-register (SAR) ADC and a 433 MHz wireless transmitter are also integrated in this chip. In order to improve the efficiency of analog IC layout design, the automatic placement system (APS), which is expected to improve the layout design procedure for analog IC product development, is proposed to quickly provide a layout design placement. The second part of the dissertation first proposes a method based on a genetic algorithm (GA) for optimization of the battery pack (OBP). The proposed method considers the cell balance of battery packs and thus avoids cell over-discharge and over-charge. Validation results indicate that the proposed method can greatly reduce temperature variation and power loss due to temperature effect, and can accurately estimate battery packs’ SOC and terminal voltage. Secondly, a new SOC estimation method, “Modified ECE + EKF,” is proposed, combining a modified ECE method with an EKF-based method. The modified ECE method considers self-discharge, influence of temperature, and SOC on coulombic efficiency, while the EKF-based method is used to make the approximate initial SOC value converge to its real value. The experimental results show that the proposed method is superior to several traditional techniques, giving a SOC estimation accuracy within 1% of the true value. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:23:43Z (GMT). No. of bitstreams: 1 ntu-101-D93522037-1.pdf: 12007925 bytes, checksum: bd8d44fe8845d22d0b82b04a9852cf50 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Content vii List of Tables xiii List of Figures xvii Nomenclature xxvii CHAPTER 1. Introduction 1 1.1. Motivation 1 1.2. Sensor Design 2 1.2.1. Gyroscopes 2 1.2.2. Temperature Sensors 4 1.3. State of Charge (SOC) Estimation 5 1.4. The Framework of the Dissertation 6 1.5. Contributions 10 CHAPTER 2. Single-Gimbaled Decoupled CMOS-MEMS Gyroscope (SGDG) 13 2.1. Introduction 14 2.2. Post-CMOS MEMS Technology 16 2.2.1. Thin-Film 16 2.2.2. DRIE 19 2.2.3. Improved DRIE 21 2.3. Effective Young’s Modulus of Composite Structure 24 2.3.1. Equivalent Model 26 2.3.2. Simulation Results 30 2.3.3. Post Process 35 2.3.4. Experimental Results 37 2.4. The Derivation of EOM of a 3-axis Gimbaled Gyroscope 44 2.4.1. Theoretical Background of Lagrange’s Equation 44 2.4.2. Position and Coordinate Transformation 45 2.4.3. Position and Velocity of the Gimbal 48 2.4.4. Position and Velocity of the Proof Mass 48 2.4.5. Total Kinetic Energy and Potential Energy of the System 49 2.4.6. EOM of the System 50 2.5. The Solution of EOM of a 3-axis Gimbaled Gyroscope 54 2.5.1. Analytical Solutions of Simplified EOM 56 2.5.2. Sense-to-Drive Ratio and Sensitivity 57 2.6. Mechanical-Thermal-Noise Consideration 61 2.6.1. Noise Transform from Drive-Axis to Sense-Axis 61 2.6.2. Noise for Sense-Axis 62 2.6.3. Signal-to-Noise Ratio Analysis and Resolution 63 2.7. Out-of-Plane SGDG 64 2.7.1. Design Concept 64 2.7.2. Mechanical Design 67 2.7.3. Modal Analysis 71 2.7.4. Post-Process 73 2.8. In-Plane SGDG 78 2.8.1. Design Concept 78 2.8.2. Mechanical Design 80 2.8.3. Modal Analysis 82 2.8.4. Near-Optimal Design 82 2.8.5. Gyroscope Sensitivity Enhancement 87 2.9. Feedback Frequency-Matching Algorithm (FFMA) 90 2.9.1. Resonant frequency Tuning 91 2.9.2. Feedback Algorithm 96 2.9.3. Simulation Results 99 2.10. Quadrature Error Cancellation (QEC) 111 2.10.1. Mechanical Quadrature Model 113 2.10.2. Simulation Results without FFMA 118 2.10.3. Simulation Results with FFMA 121 2.11. Summary 125 CHAPTER 3. Switched-Capacitor Sensing Circuit 127 3.1. Introduction 127 3.2. Circuit Design 129 3.3. Simulation Results 136 3.4. Experimental Results 143 3.5. Summary 147 CHAPTER 4. Wireless Temperature Sensor Design 149 4.1. Introduction 150 4.2. CMOS PTAT Principle 152 4.3. DZTC-based Temperature Sensor 155 4.3.1. ZTC Point 156 4.3.2. DZTC Voltage and Current Reference 159 4.3.3. Sensitivity Enhancement of Temperature Sensor 161 4.3.4. Simulation Results 162 4.4. Wireless DZTC-based Temperature Sensor 167 4.4.1. System Architecture 168 4.4.2. Successive-Approximation-Register ADC (SAR ADC) 169 4.4.3. On-Off Keying (OOK) Transmitter 172 4.4.4. Regulator 173 4.4.5. Simulation Results 174 4.5. Experimental Results 185 4.6. Summary 198 CHAPTER 5. GA-based Automatic Placement System for Analog IC Layout Design 199 5.1. Introduction 200 5.2. Layout Performance Indices 203 5.2.1. Chip Area 203 5.2.2. IO-Relationship 203 5.2.3. Power Consumption 205 5.2.4. MOS-Type Transformation 207 5.3. Automatic Placement System (APS) 208 5.3.1. Data Input 209 5.3.2. Arrangement Units 209 5.3.3. Revised Tree-Structure Methodology (RTSM) 211 5.3.4. Non-Overlapping Check 213 5.4. GA Algorithm 215 5.4.1. Flowchart of GA 216 5.4.2. Fitness Function 222 5.5. Case Study 224 5.5.1. RF to DC 225 5.5.2. DC-BIAS 229 5.5.3. OP-amp 236 5.5.4. Non-overlapping Clock 249 5.6. Summary 255 CHAPTER 6. GA-based Optimization of Battery Pack 257 6.1. Introduction 257 6.2. Model 259 6.2.1. Assumption 259 6.2.2. Objective Function 260 6.2.3. Constraints 263 6.2.4. Procedures for Finding the Optimal Pack Combination 265 6.3. Genetic Algorithm 266 6.4. Simulation Results 269 6.5. Experimental Results 274 6.5.1. Temperature Effect 276 6.5.2. Power Loss Effect 283 6.5.3. State of Charge (SOC) Estimation 285 6.6. Summary 291 CHAPTER 7. State of Charge Estimation 293 7.1. Introduction 294 7.2. Equivalent Coulombic Efficiency (ECE) 297 7.2.1. Calculation of the Equivalent Coulombic Efficiency 298 7.2.2. Modified ECE Method 300 7.3. Battery Modeling 303 7.4. EKF Algorithm Based on the Battery Model 304 7.5. Experimental Results 307 7.5.1. Experiment I: under fixed constant-current pulse conditions 307 7.5.2. Experiment II: under different constant-current pulse conditions 307 7.5.3. Model Parameter Identification 310 7.5.4. SOC Estimation Results 315 7.6. Summary 323 CHAPTER 8. Applications and Experiments 325 8.1. Hardware Framework 326 8.1.1. Humanoid Robot 326 8.1.2. Gyroscope 327 8.1.3. Battery Management System 328 8.2. Software Framework 332 8.3. Experimental Results 335 8.3.1. Experiment I: legs walking on the air 335 8.3.2. Experiment II: waving the right and left arms 341 8.4. Summary 348 CHAPTER 9. Conclusions and Future Works 349 9.1. Conclusions 349 9.2. Future Works 350 9.2.1. Fabrication Method for Thick-Type Gyroscope 351 9.2.2. Dual-axis Dual-gimbaled Gyroscope 353 9.2.3. Wireless Temperature Sensor 354 9.2.4. Adaptive Extended Kalman Filter (AEKF) 355 References 357 Appendix A 379 Appendix B 383 | |
| dc.language.iso | en | |
| dc.subject | 無線溫度感測器 | zh_TW |
| dc.subject | 正交誤差消除法 | zh_TW |
| dc.subject | 電池封裝最佳化設計 | zh_TW |
| dc.subject | 單框架解耦陀螺儀 | zh_TW |
| dc.subject | 修正等效庫倫效率結合擴充卡爾曼濾波器 | zh_TW |
| dc.subject | 回授頻率匹配演算法 | zh_TW |
| dc.subject | Modified ECE + EKF | en |
| dc.subject | Feedback Frequency-Matching Algorithm (FFMA) | en |
| dc.subject | Quadrature Error Cancellation (QEC) | en |
| dc.subject | Wireless Temperature Sensor | en |
| dc.subject | Optimization of the Battery Pack (OBP) | en |
| dc.subject | Single-Gimbaled Decoupled Gyroscope (SGDG) | en |
| dc.title | 機器人系統的智慧型感測器設計及電池殘電量的估測 | zh_TW |
| dc.title | Design of Intelligent Sensors and Battery State-of-Charge Estimation for a Robotic System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張培仁,林榮慶,施文彬,程啟正 | |
| dc.subject.keyword | 單框架解耦陀螺儀,回授頻率匹配演算法,正交誤差消除法,無線溫度感測器,電池封裝最佳化設計,修正等效庫倫效率結合擴充卡爾曼濾波器, | zh_TW |
| dc.subject.keyword | Single-Gimbaled Decoupled Gyroscope (SGDG),Feedback Frequency-Matching Algorithm (FFMA),Quadrature Error Cancellation (QEC),Wireless Temperature Sensor,Optimization of the Battery Pack (OBP),Modified ECE + EKF, | en |
| dc.relation.page | 383 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 11.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
