Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65053
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorYu-Hsuan Chenen
dc.contributor.author陳有宣zh_TW
dc.date.accessioned2021-06-16T23:19:14Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation參考文獻
[1] R. Bashir, 'BioMEMS: state-of-the-art in detection, opportunities and prospects,' Advanced Drug Delivery Reviews, vol. 56, pp. 1565-1586, Sep 2004..
[2] G. H. Wu, et al., 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature Biotechnology, vol. 19, pp. 856-860, Sep 2001.
[3] M. Liss, et al., 'An aptamer-based quartz crystal protein biosensor,' Analytical Chemistry, vol. 74, pp. 4488-4495, Sep 2002.
[4] D. R. Shankaran, et al., 'Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,' Sensors and Actuators B-Chemical, vol. 121, pp. 158-177, Jan 2007.9
[5] Y. Cui, et al., 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, Aug 2001.
[6] R. J. Chen, et al., 'Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 4984-4989, Apr 2003.
[7] W. U. Wang, et al., 'Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 3208-3212, Mar 2005.
[8] E. Stern, et al., 'Label-free immunodetection with CMOS-compatible semiconducting nanowires,' Nature, vol. 445, pp. 519-522, Feb 2007.
[9] G. F. Zheng, et al., 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays,' Nature Biotechnology, vol. 23, pp. 1294-1301, Oct 2005.
[10] Kim, et al., 'Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,' Applied Physics Letters, vol. 91, Sep 2007.
[11] Z. Li, et al., 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004.
[12] Y. L. Bunimovich, et al., 'Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,' Journal of the American Chemical Society, vol. 128, pp. 16323-16331, Dec 2006.
[13] J. Hahm and C. M. Lieber, 'Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,' Nano Letters, vol. 4, pp. 51-54, Jan 2004.
[14] F. Patolsky, et al., 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, Sep 2004.
[15] ”Nanowire Sensors for Medicine and The Life Science ” Nanomedicine, vol 1, 2006, pp. 51-65
[16] Jiyong Huang et al, 'Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor'
[17] Engvalle, E. and Perlmann, P., Immunochemistry, 8, 871-874, 1971
[18] Gengfeng Zheng, Fernando Patolsky, Yi Cui, Wayne U Wang, and Charles M. Lieber, Nature Biotech., 23,1294-1301, 2005
[19] P. Bergveld, IEEE Trans. Biomed. Eng. BME-19, 342(1972).
[20] G. F. Blackburn, in Biosensors: Fundamentals and Applications, A. P. F. Turner, I. Karube, G. S. Wilson, Eds.(Oxford Univ. Press, Oxford, 1987), pp. 481–530.
[21] D. G. Hafeman, J. W. Parce, H. M. McConnell, Science 240, 1182 (1988).
[22] F. Seker, K. Meeker, T. F. Kuech, A. B. Ellis, Chem. Rev.100, 2505 (2000).
[23] Bobby Reddy Jr. et al., 'High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing' Biomed Microdevices, vol. 13, 2011, pp.335 – 344
[24] Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M. Appl. Phys. Lett. 2001, 78, 2214.
[25] Gudiksen, M. S.; Wang, J.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 4062. Gudiksen, M. S.; Wang, J.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 8801.
[26] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
[27] Y. Cui, C. M. Lieber, Science 291, 851 (2001).
[28] Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Nano Lett. 2004, 4, 3, 433-436
[29] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber, Science, 293, 1289-1292, 2001
[30] Jong-in Hahm and Charles M. Lieber, Nano Letters, 4, 51-54, 2004.
[31] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang, and Charles M. Lieber, PNAS, 101, 14017-14022, 2004.
[32] Fernando Patolsky, Brian P. Timko, Guihua Yu, Ying Fang, Andrew B. Greytak, Gengfeng Zheng,1 Charles M. Lieber, Science, 313, 1100-1104, 2006
[33] H.-C. Lin, M.-H. Lee, C.-J. Su, T.-Y. Huang, C. C. Lee, and Y.-S. Yang, “A Simple and Low-Cost Method to Fabricate TFTs With Poly-Si Nanowire Channel,” IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 9, SEPTEMBER 2005
[34] Eric Stern, James F. Klemic, David A. Routenberg, Pauline N. Wyrembak, Daniel B. Turner-Evans, Andrew D. Hamilton, David A. LaVan, Tarek M. Fahmy & Mark A. Reed,” Label-free immunodetection with CMOS-compatible semiconducting nanowires,” NATURE, Vol 445, 1, February 2007
[35] Z. Li, et al., 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004.
[36] F. L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, and C. C. Huang et al., “5 nm-gate nanowire FinFET,” in VLSI Symp. Tech. Dig., 2004, pp. 196–197.
[37] L. Risch, L. Dreekornfeld, J. Hartwich, F. Hofmann, J. Kretz, and M. Stadele, “Multi gate transistors and memory cells for future CMOS generation,” in Proc. Tech. Dig. IEEE Silicon Nanoelectron. Workshop, 2004, pp. 1–2.
[38] Horng-Chih Lin, Ming-Hsien Lee, Chun-Jung Su, and Shih-Wen Shen,” Fabrication and Characterization of Nanowire Transistors With Solid-Phase Crystallized Poly-Si Channels,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 10, OCTOBER 2006
[39] Fang-Shing Wang, Meng-Jin Tsai, and Huang-Chung Cheng,”The Effects of NH3 Plasma Passivation on Polysilicon Thin-Film Transistors,” IEEE ELECTRON DEVICE LETTERS, VOL. 16, NO. 11, NOVEMBER 1995
[40] Ming-Pei Lu 1 , 4 , Cheng-Yun Hsiao 2 , 4 , Wen-Tsan Lai 2 and Yuh-Shyong Yang 1 “Probing the sensitivity of nanowire-based biosensors using liquid-gating
[41] Cheng-Yun Hsiao, Chih-Heng Lin, Cheng-Hsiung Hung, Chun-Jung Su, Yen-Ren Lo, Cheng-Che Lee, Horng-Chin Lin, Fu-Hsiang Ko, Tiao-Yuan Huang, Yuh-Shyong Yang,”Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosensors and Bioelectronics 24 (2009) 1223–1229
[42] L. Pichon, F. aoult, K. Mourgues, K. Kis-Sion, T. Mohammed-Brahim, O. Bonnaud, 'Low temperature unhydrogenated in-situ doped polysilicon thin film transistors:Towards a technology for flat panel displays', Thin Solid Films , vol 296, 1997, pp. 133-136
[43] You-Lin Wu, Jing-Jenn Lin ,Po-Yen Hsu ,Chung-Ping Hsu ,'Highly sensitive polysilicon wire sensor for DNA detection using silica nanoparticles/ -APTES nanocomposite for surface modification', Sensors and Actuators B vol. 155, 2011, pp. 709–715
[44] Z. Li, et al., 'Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,' Applied Physics a-Materials Science & Processing, vol. 80, pp. 1257-1263, Mar 2005.
[45] P. R. Nair and M. A. Alam, 'Design considerations of silicon nanowire biosensors,' IEEE Transactions on Electron Devices, vol. 54, pp. 3400-3408, 2007.
[46] Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed, 'Importance of the Debye screening length on nanowire field effect transistor sensors', Nano Lett., Vol. 7, No.11, pp. 3405- 3409, 2007.
[47] Xuan P. A. Gao, Gengfeng Zheng, and Charles M. Lieber, ' Subthreshold regime has the optimal sensitivity for nanowire FET biosensors', Nano Lett., 10, pp. 547-552, 2010
[48] Seong, S. Y. and C. Y. Choi, 'Current status of protein chip development in terms of fabrication and application'. Proteomics, 2003. 3(11) : p. 2176-2189.
[49] Birkert, O., H. M. Haake, Schutz, A., Mack, J., Brecht, A., Jung, G., Gauglitz, G., 'A streptavidin surface on planar glass substrates for the detection of biomolecular interaction'. Analytical Biochemistry, 2000. 282(2) : p. 200-208.
[50] Pavlickova, P., A. Knappik, Kambhampati, D., Ortigao, F., Hug, H., 'Microarray of recombinant antibodies using a streptavidin sensor surface self-assembled onto a gold layer. Biotechniques', 2003. 34(1) : p. 124-130.
[51] Rusmini, F., Z.Y. Zhong, and J. Feijen, 'Protein immobilization strategies for protein biochips. Biomacromolecules', 2007. 8(6): p. 1775-1789.
[52] Smith, C. L., J. S. Milea, Nguyen, G. H., 'Immobilization of nucleic acids using biotin-strept(avidin) systems'., Immobilisation of DNA on Chips Ii, 2005. 261: pp. 63-90.
[53] Pritchard, Alan B.; McCormick, Donald B.; Wright, Lemuel D. (December 1966). 'Optical rotatory dispersion studies of the heat denaturation of avidin and the avidin-biotin complex'. Biochemical and Biophysical Research Communications 25 (5), pp.524–528.
[54] McFarland A. W. et al., 'Production and characterization of polymer microcantilevers ', Rev. Sci. Instrum., 7, 2004, pp. 2756–2758.
[55] Luca De Vico et al, 'Quantifying signal changes in nano-wire based biosensors', Nanoscale, 2011, vol 3, pp. 706–717
[56] Atsushi Taninaka, Osamu Takeuchi and Hidemi Shigekawa, 'Hidden variety of biotin–streptavidin/avidin local interactions revealed by site-selective dynamic force spectroscopy', Phys. Chem. Chem. Phys., vil. 12, 2010, pp. 12578–12583
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65053-
dc.description.abstractToday, point-of-care testing, individualized medicine and tele-medicine are the most critical points in the development of medicine. There must have the biological sensing technology which is fast, just-in-time and accurate to support the development of medicine. All these back-ups from the behind is to make the medicine development successful. With nano-technology being developed drastic, biomolecular sensing technology prospers tremendously well than ever before. Furthermore, much the newer sensing skill is developed thereby. Among the various new technology, the poly silicon nanowire field effect transistor biosensors is the most crucial one. It has the characteristic of high sensibility, low cost. It can be integrated with the standard production operation in order to be mass produced. This new technology has become the popular academic research topic.
By the development of the poly silicon sensing technology, we meet the typical issue of the instability as such that it interrupt our go-ahead steps. In view of solving the problem thoroughly, using the technology of oxygen plasma, I have studied and submitted our theoretical researching on surface modification of poly silicon nanowire. By doing the experiments, it is concluded that the threshold voltage and on current to leakage current ratio of poly silicon nanowire field effect transistor biosensors are seen to be rising obviously. On the other hand, the poly silicon nanowire which is processed by surface immobilization to let the device has the ability of linking to the specific biomolecular. By using the interaction of Avidin/Streptavidin and Biotin, we can explore the generated effect when the drift electric field is applied in the sensing environment. From the result of my experiment, it is verified that the sensing ability of poly silicon nanowire field effect transitor biosensors is growing when drift electric field is used. Furthermore, I experiment the sensing phenomenon of Stretavidin and Avidin. It is found that the sensitivity of the device is completely different when different targets are sensed in testing. As above mentioned, the essay I made could verify that the bio molecular sensing technology has the big potential development future and it will bring big benefit to human life definitely.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:19:14Z (GMT). No. of bitstreams: 1
ntu-101-R99943068-1.pdf: 4426041 bytes, checksum: 724a73471df837f16693cdc516a5cd06 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員會審定書 Ⅰ
誌謝 Ⅱ
摘要 Ⅲ
ABSTRACT Ⅳ
目錄 Ⅴ
圖目錄 Ⅶ
第一章 序論 1
一.1 序言 1
一.2 研究動機 3
一.3 論文架構 4
第二章 文獻回顧及原理介紹 5
二.1 生物分子感測技術之發展 5
二.2 奈米線場效生物感測器 7
二.3 感測特性之提升 12
第三章 元件製作與量測方法 17
三.1 多晶矽奈米線薄膜電晶體元件製作過程與方法 17
三.1.1 製程步驟 17
三.1.2 元件圖 21
三.2 元件表面修飾與固定化 26
三.2.1 生物樣品材料 26
三.2.2 表面修飾及固定化步驟 32
三.3 量測架構與方法 34
三.3.1 測量系統的架設 34
三.3.2 元件電性量測 35
三.3.3 元件特性分析和目標物感測 37
第四章 實驗結果與討論 38
四.1 O2 plasma的效應 38
四.2 多晶矽奈米線生物感測器對不同濃度Streptavidin與Avidin感測結果 43
四.3 Avidin與S.Avidin感測結果的比較 51
第五章 結論與未來展望 53
五.1 結論 53
五.2 未來展望 55
參考文獻 56
dc.language.isozh-TW
dc.title提升多晶矽奈米生物感測元件之研究-
表面改質與遷移電場之應用
zh_TW
dc.titleThe Enhancement of Poly-Silicon Nanowire Biosensors Base on Surface Modification and Drift Electrical Fielden
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡(Po-Ling Kuo),林啟萬(Chii-Wann Lin)
dc.subject.keyword多晶矽奈米線,生物感測器,氧電漿,遷移電場,zh_TW
dc.subject.keywordpoly silicon nanowire,biosensors,oxygen plasma,drift electric field,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved