Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorWei-Lun Chungen
dc.contributor.author鍾瑋倫zh_TW
dc.date.accessioned2021-06-16T23:16:50Z-
dc.date.available2014-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation[1.1] G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
[1.2] U. Yuji and T. Tsunemasa, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 44, 124003 (2005).
[1.3] Y. Z. Zhu, G. D. Chen, Honggang Ye, Aron, Walsh, C. Y. Moon, and Su-Huai Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B 77, 245209 (2008).
[1.4] Andre Schleife, Claudia Rod, Jurgen Furthmuller, and Friedhelm Bechstedt, “Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations,” New J. Phys. 13, 085012 (2011).
[1.5] D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15, 86 (1960).
[1.6] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering in ZnO,” Phys. Rev. B 60, 2340 (1999).
[1.7] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth 260, 166 (2004).
[1.8] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng., B 80, 381 (2001).
[1.9] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. 18, 2720 (2006).
[1.10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455( 2005).
[1.11] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[1.12] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum well light-emitting diode of prestrained growth,” Appl. Phys. Lett. 91(5), 051121 (2007).
[1.13] I. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[1.14] Y.-S. Lin, K.-J. Ma, C. Hsu, Y.-Y. Chung, C.-W. Liu, S.-W. Feng, Y.-C. Cheng, C. C. Yang, M.-H. Mao, H.-W. Chuang, C.-T. Kuo, J.-S. Tsang, and T. E. Weirich, “Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells,” Appl. Phys. Lett. 80(14), 2571–2573 (2002).
[1.15] M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[1.16] S. W. Feng, T. Y. Tang, Y. C. Lu, S. J. Liu, E. C. Lin, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, J. Y. Lin, and H. X. Jiang, “Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing,” J. Appl. Phys. 95(10), 5388–5396 (2004).
[1.17] Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, J.-R. Yang, A. Rosenauer, K.-J. Ma, S.-C. Shi, L. C. Chen, C.-C. Pan, and J.-I. Chyi, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett. 84(14), 2506–2508 (2004).
[1.18] H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371–1373 (2004).
[1.19] H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[1.20] P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, “Composition fluctuation in InGaN quantumwells made from molecular beam or metalorganic vapor phase epitaxial layers,” J. Appl. Phys. 91(11), 8979–8985 (2002).
[1.21] I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim, “Green light emitting diodes with self-assembled In-rich InGaN quantum dots,” Appl. Phys. Lett. 91(13), 133105 (2007).
[1.22] Y. H. Cho, Y. P. Sun, H. M. Kim, T. W. Kang, E.-K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “High quantum efficiency of violet-blue to green light emission in InGaN quantum well structures grown by graded-indium content profiling method,” Appl. Phys. Lett. 90(1), 011912 (2007).
[1.23] Y.-Y. Chung, Y.-S. Lin, S.-W. Feng, Y.-C. Cheng, E.-C. Lin, C. C. Yang, K.-J. Ma, C. Hsu, H.-W. Chuang, C.-T. Kuo, and J.-S. Tsang, “Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells,” J. Appl. Phys. 93(12), 9693–9696 (2003).
[1.24] R. P. Koffyberg, “Thermoreflectance spectra of CdO: Band gaps and band-population effects,” Phys. Rev. B 13, 4470-4476 (1976).
[1.25] Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C.Y. Moon, and S. H. Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B 77, 245209 (2008).
[1.26] A. Y. Azarov, T. C. Zhang, B. G. Svensson, and A. Y. Kuznetsov, “Cd diffusion and thermal stability of CdZnO/ZnO heterostructures,” Appl. Phys. Lett. 99, 111903 (2011).
[1.27] R. Zhang, P. Chen, Y. Zhang, X. Ma, and D. Yang, “Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films,” J. Cryst. Growth 312, 1908-1911 (2010).
[1.28] H. S. Kang, S. H. Lim, J. W. Kim, H. W. Chang, G. H. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker, and Q. X. Jia, “Exciton localization and Stokes’ shift in Zn1−xCdxO thin films depending on chemical composition,” J. Cryst. Growth 287, 70-73 (2006).
[1.29] J. J. Chen, S. Jang, F. Rena, S. Rawal, Y. Li, H. S. Kim, D. P. Norton, S. J. Pearton, and A. Osinsky, “Thermal stability of Ti/Al/Pt/Au and Ti/Au Ohmic contacts on n-type ZnCdO,” Appl. Surf. Sci. 253, 746-752 (2006).
[1.30] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, “Band gap properties of Zn1−xCdxO alloys grown by molecular-beam epitaxy,” Appl. Phys. Lett. 89, 151909 (2006).
[1.31] T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinumac, “Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77, 1632-1634 (2000).
[1.32] W. F. Yang, L. M. Wong, S. J. Wang, H. D. Sun, C. H. Ge, A. Y. S. Lee, and H. Gong, “Photoluminescence characteristics of ZnCdO/ZnO single quantum well grown by pulsed laser deposition,” Appl. Phys. Lett. 98, 121903 (2011).
[1.33] S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, and F. Henneberger, “Visible-wavelength laser action of ZnCdO/(Zn,Mg)O multiple quantum well structures,” Appl. Phys. Lett. 91, 231103 (2007).
[1.34] S. Kalusniak, S. Sadofev, J. Puls, and F. Henneberger, “ZnCdO/ZnO – a new heterosystem for green-wavelength semiconductor lasing,” Laser & Photon. Rev. 3, 233-242 (2008).
[1.35] S. Blumstengel, S. Sadofev, H. Kirmse, and F. Henneberger, “Extreme low-temperature molecular beam epitaxy of ZnO-based quantum structures,” Appl. Phys. Lett. 98, 031907 (2011).
[1.36] A. V. Thompson, C. Boutwell, J. W. Mares, W. V. Schoenfeld, A. Osinsky, B. Hertog, J. Q. Xie, S. J. Pearton, and D. P. Norton, “Thermal stability of CdZnO/ZnO multi-quantum-wells,” Appl. Phys. Lett. 91, 201921 (2007).
[1.37] K. Yamamoto, M. Adachi, T. Tawara, H. Gotoh, A. Nakamura, and J. Temmyo, “Synthesis and characterization of ZnCdO/ZnO multiple quantum wells by remote-plasma-enhanced MOCVD,” J. Cryst. Growth 312, 1496-1499 (2010).
[2.1] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003).
[2.2] A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, “Equation for internal quantum efficiency and its temperature dependence of luminescence, and application to InxGa1-xN/GaN multiple quantum wells,” Jpn. J. Appl. Phys. 45(11), 8719–8723 (2006).
[2.3] E. M. Goldys, M. Godlewski, R. Langer, A. Barski, P. Bergman, and B. Monemar, “Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy,” Phys. Rev. B 60(8), 5464–5469 (1999).
[2.4] H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1543 (2000). 
[3.1] R. Zhang, P. Chen, Y. Zhang, X. Ma, and D. Yang, “Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films,” J. Cryst. Growth 312, 1908-1911 (2010).
[3.2] I. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701-2703 (1996).
[3.3] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77, 2988-2990 (2000).
[3.4] Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, and J. R. Yang, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett. 84, 2506-2508 (2004).
[3.5] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys Lett. 83, 4906-4908 (2003).
[3.6] A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, “Equation for internal quantum efficiency and its temperature dependence of luminescence, and application to InxGa1-xN/GaN multiple quantum wells,” Jpn. J. Appl. Phys. 45, 8719-8723 (2006).
[3.7] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006-2008 (1998).
[3.8] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73, 1691-1693 (1998).
[3.9] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum well light-emitting diode of prestrained growth,” Appl. Phys. Lett. 91, 051121, (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65036-
dc.description.abstract在本論文中,我們利用光致發螢光技術研究氮化銦鎵/氮化鎵發光二極體及氧化鎘鋅/氧化鋅發光二極體之光學特性。首先以氮化銦鎵半導體雷射 (波長406nm) 對氮化銦鎵/氮化鎵發光二極體進行隨溫度變化的螢光頻譜和隨激發強度變化的螢光頻譜量測,研究在高溫成長不同厚度的p型氮化鎵下,量子井因為受到高溫熱退火而重整銦聚集結構並加強載子局部效應,也因為晶格常數的不匹配而增強內部電場,造成內部量子效率及史塔克效應不同的影響。此外,用氦鎘雷射 (波長325nm) 對氧化鎘鋅/氧化鋅發光二極體進行隨溫度變化的螢光頻譜和隨激發強度變化的螢光頻譜量測,研究在氮化鎵及氧化鋅基板上成長氧化鎘鋅/氧化鋅量子井,造成內部量子效率及史塔克效應的影響,並利用兩個高斯分佈擬合發光頻譜。當量子井中鎘濃度高時,發光頻譜中存在著rock-salt氧化鎘鋅結構及wurtzite氧化鎘鋅結構,並隨著量子井中鎘濃度的增加,rock-salt結構相對wurtzite結構對全頻譜的影響更甚。zh_TW
dc.description.abstractIn this study, we demonstrate the emission characteristics in InGaN/GaN QWs and in CdZnO/ZnO QWs with photoluminescence measurements. First, temperature-dependent photoluminescence and excitation power-dependent photoluminescence are performed on InGaN/GaN QWs with an InGaN-based diode laser (λ=406nm). The counteraction between the increased carrier localization effect in the QWs, which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs, which is caused by the increased piezoelectric field, when the different thickness of p-type layer is grown at a high temperature on the InGaN/GaN QWs is illustrated. Next, we demonstrate the results of temperature-dependent photoluminescence and excitation power-dependent photoluminescence with a He-Cd laser (λ=325nm) to understand the emission behaviors of the CdZnO/ZnO QW on GaN and ZnO templates. With two-Gaussion fitting, wurtzite CdZnO structure and rock-salt CdZnO structure exist in the CdZnO well layers. The rock-salt structures may dominate over the wurtzite structures in photoluminescence intensity when the total Cd content is high.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:16:50Z (GMT). No. of bitstreams: 1
ntu-101-R99941079-1.pdf: 1554698 bytes, checksum: 0937ea8bca5255c5a3dc7c98c4d657ce (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 II
摘要 III
Contents V
Chapter 1 Introduction 1
1.1 Applications of GaN-based and ZnO-based Devices 1
1.2 Review of the Emission Characteristics of the InGaN/GaN Quantum Wells 3
1.3 Review of the Emission Charcteristics of the CdZnO/ZnO Quantum Wells 6
1.4 Research Motivations 8
References 11
Chapter 2 Effects of Overgrown p-layer on the Emission Characteristics of the InGaN/GaN Quantum Wells in High-indium Light-emitting Diode 21
2.1 Sample Descriptions 21
2.2 Photoluminescence (PL) Setup 22
2.3 Photoluminescence (PL) Results 23
2.3.1 Measurement Results of Sample A-F 24
2.3.2 Measurement Results of Sample FA-FE 30
References 34
Chapter 3 Characteristics Comparison between the CdZnO/ZnO Quantum Wells on ZnO and GaN Templates 43
3.1 Sample Descriptions 43
3.2 Basic Characterization Results 45
3.4 Photoluminescence (PL) Results 47
References 56
Chapter 4 Conclusions 69
dc.language.isoen
dc.subject氮化銦鎵/氮化鎵zh_TW
dc.subject量子井zh_TW
dc.subject氧化鎘鋅/氧化鋅zh_TW
dc.subject光致發光zh_TW
dc.subjectCdZnO/ZnOen
dc.subjectInGaN/GaNen
dc.subjectQuantum-wellen
dc.subjectPhotoluminescenceen
dc.subjectPLen
dc.title以光致發螢光技術研究氮化銦鎵/氮化鎵及氧化鎘鋅/氧化鋅量子井結構之發光特性zh_TW
dc.titleStudy of the Emission Characteristics of InGaN/GaN and CdZnO/ZnO Quantum-well Structures with the Photoluminescence Spectroscopyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭隆瀚,黃建璋,吳育任
dc.subject.keyword光致發光,氮化銦鎵/氮化鎵,氧化鎘鋅/氧化鋅,量子井,zh_TW
dc.subject.keywordInGaN/GaN,CdZnO/ZnO,Quantum-well,Photoluminescence,PL,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved