Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65030
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorHung-Chi Changen
dc.contributor.author張鴻麒zh_TW
dc.date.accessioned2021-06-16T23:16:21Z-
dc.date.available2017-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation1. Shaw, J.E. and D.J. Chisholm, 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. Med J Aust, 2003. 179(7): p.379-83.
2. Vijan, S., Type 2 diabetes. Ann Intern Med, 2010. 152(5): p. ITC31-15; quiz ITC316.
3. Yoo, W.H., T.S. Park, and H.S. Baek, Marked weight loss in a type 2 diabetic patient treated with acarbose. Diabetes Care, 1999. 22(4): p. 645-6.
4. Huse, D.M., et al., The economic costs of non-insulin-dependent diabetes mellitus. JAMA, 1989. 262(19): p. 2708-13.
5. Wild, S., et al., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004. 27(5): p. 1047-53.
6. Schalkwijk, C.G. and C.D. Stehouwer, Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond), 2005. 109(2): p. 143-59.
7. Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840-6.
8. Chen, L., D.J. Magliano, and P.Z. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol, 2012. 8(4): p. 228-36.
9. Hossain, P., B. Kawar, and M. El Nahas, Obesity and Diabetes in the Developing World — A Growing Challenge. New England Journal of Medicine, 2007. 356(3): p. 213-215.
10. Mohan, V., et al., Intra-urban differences in the prevalence of the metabolicsyndrome in southern India -- the Chennai Urban Population Study (CUPS No. 4). Diabet Med, 2001. 18(4): p. 280-7.
11. Riserus, U., W.C. Willett, and F.B. Hu, Dietary fats and prevention of type 2 diabetes. Prog Lipid Res, 2009. 48(1): p. 44-51.
12. Ahima, R.S., Digging deeper into obesity. J Clin Invest, 2011. 121(6): p. 2076-9.
13. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 1993. 329(14): p. 977-986.
14. Ripsin, C.M., H. Kang, and R.J. Urban, Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician, 2009. 79(1): p. 29-36.
15. Idris, I. and R. Donnelly, Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab, 2009. 11(2): p.79-88.
16. Hummel, C.S., et al., Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol, 2011. 300(1): p. C14-21.
17. Neumiller, J.J., J.R. White, Jr., and R.K. Campbell, Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs, 2010. 70(4): p. 377-85.
18. Nair, S. and J.P. Wilding, Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab, 2010. 95(1): p. 34-42.
19. Kinne, R.K. and F. Castaneda, SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol, 2011(203): p. 105-26.
20. Washburn, W.N., Evolution of sodium glucose co-transporter 2 inhibitors as anti-diabetic agents. Expert Opin Ther Pat, 2009. 19(11): p. 1485-99.
21. Freitas, H.S., et al., Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of
hepatocyte nuclear factor-1alpha expression and activity. Endocrinology, 2008. 149(2): p. 717-24.
22. Vallon, V., Molecular determinants of renal glucose reabsorption. Focus on 'Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2'. Am J Physiol Cell Physiol, 2011. 300(1): p. C6-8.
23. Turk, E., et al., Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature, 1991. 350(6316): p. 354-6.
24. Abdul-Ghani, M.A., L. Norton, and R.A. Defronzo, Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev, 2011. 32(4): p. 515-31.
25. Pfister, M., et al., Inhibition of SGLT2: a novel strategy for treatment of type 2 diabetes mellitus. Clin Pharmacol Ther, 2011. 89(4): p. 621-5.
26. Castaneda, F. and R.K. Kinne, A 96-well automated
method to study inhibitors of human sodium-dependent D-glucose transport. Mol Cell Biochem, 2005. 280(1-2): p. 91-8.
27. Pajor, A.M., et al., Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. J Pharmacol Exp Ther, 2008. 324(3): p. 985-91.
28. Tyagi, N.K., et al., D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Biochemistry, 2007. 46(47): p. 13616-28.
29. Blodgett, A.B., et al., A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol Ther, 2011. 13(7): p. 743-51.
30. Tanojo, H., H.E. Junginger, and H.E. Boddé, Influence of pH on the intensity and stability of the fluorescence of p-aminobenzoic acid in aqueous solutions. European Journal of Pharmaceutical Sciences, 1997. 5(1): p. 31-35.
31. Yoshioka, K., et al., A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta, 1996. 1289(1): p. 5-9.
32. Sato, S., et al., Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorg Med Chem, 2007. 15(10): p. 3445-9.
33. Tahara, A., et al., Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol, 2012. 385(4): p. 423-36.
34. Meng, W., et al., Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem, 2008. 51(5): p. 1145-9.
35. Li, A.R., et al., Discovery of non-glucoside SGLT2 inhibitors. Bioorg Med Chem Lett, 2011. 21(8): p. 2472-5.
36. Kang, S.Y., et al., Glucosides with cyclic diarylpolynoid as novel C-aryl glucoside SGLT2 inhibitors. Bioorg Med Chem Lett, 2011. 21(12): p. 3759-63.
37. Kim, M.J., et al., Novel macrocyclic C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. Bioorg Med Chem, 2011. 19(18): p. 5468-79.
38. Hummel, C.S., et al., Structural selectivity of human SGLT inhibitors. Am J Physiol Cell Physiol, 2012. 302(2): p. C373-82.
39. Lee, J., et al., Pyrimidinylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. Bioorg Med Chem Lett, 2010. 20(23): p. 7046-9.
40. Xu, B., et al., O-Spiro C-aryl glucosides as novel sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. Bioorg Med Chem Lett, 2009. 19(19): p. 5632-5.
41. Millon, S.R., et al., Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat, 2011. 126(1): p. 55-62.
42. Kawauchi, K., et al., p53 regulates glucose metabolism
through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol, 2008. 10(5): p. 611-8.
43. Urner, F. and D. Sakkas, Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev, 2005. 70(4): p. 494-503.
44. Itoh, Y., et al., Fluorometric determination of glucose utilization in neurons in vitro and in vivo. J Cereb Blood Flow Metab, 2004. 24(9): p. 993-1003.
45. Mascitti, V., et al., Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors. J Med Chem, 2011. 54(8): p. 2952-60.
46. Murray, L.J., et al., Absence of Na+/sugar cotransport
activity in Barrett'smetaplasia.World J Gastroenterol, 2008. 14(9): p. 1365-9.
47. Engelman, J.A. and L.C. Cantley, A sweet new role for EGFR in cancer. Cancer Cell, 2008. 13(5): p. 375-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65030-
dc.description.abstract第二型糖尿病是目前最普遍的代謝性疾病,它會伴隨許多的併發症,像是冠狀動脈心臟性疾病、視網膜病變、神經性病變和腎臟病變…等,也造成一定的死亡率。糖尿病人口遍及全球,預計在2030年之前全世界將有3.66億人口患有第二型糖尿病。一直以來,高血糖被視為糖尿病併發症的高風險因子,如何控制血糖值也是治療糖尿病的主要目標。除了傳統使用胰島素來控制血糖,目前已開發出利用抑制腎小管再吸收葡萄糖的機轉,將體內多餘糖份經由尿液排出,進而達到控制血糖的化合物: 選擇性SGLT2抑制劑。
目前已有許多可能具選擇性抑制SGLT2活性的化合物被合成出來,因此需要一個篩選系統來做初步的篩選,以減少藥物開發的時間和成本。輻射性標定受質(14C-AMG: 14C-methyl-α-D-glucopyranoside)對於SGLT有專一性,而且具有和D-glucose接近的動力學參數,因此它是目前最普遍用來篩選此類化合物和研究SGLT的受質。但操作放射性物質的實驗具有一定的危險性和成本考量的問題,因此我們嘗試建立一個不具放射活性的細胞篩選平台,利用螢光標定受質(1-NBDG: 1-[N-(7-nitrobenz-2-oxz-1,3-diazol-4-yl)amino]-1-deoxy-D-glucose)和短暫表達hSGLT1之COS-7細胞株與穩定表達hSGLT2之CHO-K1細胞株來進行化合物抑制葡萄糖攝取的實驗,進而篩選出選擇性SGLT2抑制劑。
在篩選化合物之前,我們先由已知的SGLT受質D-glucose和AMG (methyl-α-D-glucopyranoside)與1-NBDG在短暫表達hSGLT1的COS-7細胞中作競爭,確認1-NBDG確實為SGLT的受質。另外,在短暫表達hSGLT1的COS-7細胞中分析1-NBDG對於hSGLT1的動力學參數(Km)與D-glucose和AMG比較,發現1-NBDG的Km值(0.55 ± 0.01 mM)相對於AMG (0.40 ± 0.05 mM)而言,更接近D-glucose (0.51 ± 0.02 mM)。加上由非選擇性SGLT抑制劑(Phlorizin)在使用14C-AMG和1-NBDG為受質下對hSGLT1之IC50得到相同(0.11 μM)的結果認為,1-NBDG與14C-AMG在我們所建立的系統中具有相互取代性。接著,藉由選擇性SGLT2抑制劑(Dapagliflozin)在本系統中所求出對於hSGLT1與hSGLT2的IC50值(T1: 880 nM, T2: 1.86 nM)與已發表的結果比較,發現結果相符,進而確認本系統對於篩選選擇性SGLT2抑制劑的可行性。因此我們就進行了化合物的篩選(化合物由梁碧惠博士實驗室所提供),發現其中有三個化合物對於hSGLT2具有選擇性抑劑的活性。
由實驗結果證明我們成功地建立選擇性SGLT2抑制劑之非放射性細胞篩選平台,此系統除了可經由量化的結果來判斷化合物的活性外,也可藉由肉眼來觀察螢光受質1-NBDG在細胞中的攝取; 除此之外,也可用來作為其他表達SGLT1與SGLT2的細胞株的研究工具。
zh_TW
dc.description.abstractNowadays, type 2 diabetes mellitus (T2DM) is the most common metabolic disease, which leads to many complications, including, retinopathy, nephropathy, neuropathy and coronary heart disease, which are also associated with considerable morbidity and mortality. The incidence of T2DM is increasing at an alarming rate worldwide, which may affect a projected 366 million individuals by the year 2030. Meanwhile, ‘hyperglycemia’ is considered as the major risk factor for the complications. How to control the blood glucose level seems to be the priority for treating the patients. Besides the traditional use of insulin, there is a novel mechanism for lowering the blood glucose level by blocking the renal glucose reabsorption, which excretes the extra glucose from body, using the selective SGLT2 inhibitor.
There are many compounds synthesized for the development of selective SGLT2 inhibitors; therefore, a screening platform is needed ahead for decreasing the time and cost of the drug development. An isotope-labeled substrate (14C-AMG: 14C-methyl-α-glucopyranoside) is a specific substrate for SGLT, and has a Km value close to that of D-glucose, so it is currently the most common used in compound screening and in the studies of SGLT; however, operating a radioactive experiment is quite risky and the substrate is relatively expensive. We sought to establish a non-radioactive cell-based screening platform, using a fluorescent glucose analogue (1-NBDG: 1-[N-(7-nitrobenz-2-oxz-1,3-diazol-4-yl)amino]-1-deoxy-D-glucose) as a substrate for SGLTs, transiently transfected COS-7 cells expressing hSGLT1 and a CHO-K1 stable clone expressing hSGLT2 to conduct the glucose uptake assay to screen for selective SGLT2 inhibitors. A non-radioactive cell-based screening platform for selective SGLT2 inhibitor has been established successfully. We could not only measure the potency of the compounds by quantitative data, but also observe the uptake of the fluorescent substrate, 1-NBDG, visually. Moreover, 1-NBDG might be a helpful tool to study cells expressing SGLTs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:16:21Z (GMT). No. of bitstreams: 1
ntu-101-R99423017-1.pdf: 3554485 bytes, checksum: 5698806fc15e2e3af5f979b54b76ded9 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書
誌謝……………i
中文摘要 ……ii
ABSTRACT ……iv
CONTENTS ……vi
LIST OF FIGURES ……………x
LIST OF TABLES………………xiii
LIST OF ABBREVIATIONS ……xiv
Chapter 1. Introduction ……1
1.1 Type 2 Diabetes Mellitus …1
1.1.1 Epidemiology ………………1
1.1.2 Progression and risk factor ……1
1.2 Glucose transportation ………………2
1.2.1 Sodium-glucose co-transporter 1 (SGLT1) …………3
1.2.2 Sodium-glucose co-transporter 2 (SGLT2) …………3
1.3 SGLT2 inhibitors for diabetes …………………………4
1.4 Current methods for the screening of selective SGLT2
inhibitors …………4
Chapter 2. Specific aims ………………………14
Chapter 3. Materials and methods ……………16
3.1 Cell culture and transfection …………16
3.2 Stable clone selection ……………………17
3.3 Reverse transcription-polymerase chain reaction (RT-PCR) ....18
3.3.1 RNA extraction …………………………18
3.3.2 RT-PCR ……………………………………20
3.4 Immunostaining ……………………………23
3.5 Fluorescent glucose analogue - 1-NBDG………24
3.5.1 Synthesis of 1-NBDG ……………………………24
3.5.2 Wavelength scanning of 1-NBDG and the fluorescence standard curve …………25
3.6 Optimization of the screening system …………26
3.6.1 Uptake buffers ……………………………………26
3.6.2 Lysis buffer ………………28
3.7 Transport studies …………………………………29
3.7.1 Validation of 1-NBDG uptake …………………31
3.7.2 Competition assays ……………………………31
3.7.3 Dose response assays ……………………32
3.7.4 Compound screening ……………………………32
3.7.5 Uptake of 1-NBDG and 2-NBDG through GLUT ……33
3.7.6 Uptake of 1-NBDG and 2-NBDG through SGLT1 …33
3.7.7 Uptake of 1-NBDG by mouse mammary cancer cell line .34
3.8 Kinetic studies …………………………………………34
3.8.1 Time-course assays …………………………………34
3.8.2 Saturation kinetic study using multiple concentrations of 1-NBDG...35
Chapter 4. Results ……………………………41
4.1 Validation of a cell-base system for the screening of selective SGLT2 inhibitors …………………41
4.1.1 Determination of human SGLT1 and SGLT2 expression by reverse transcription-polymerase chain reaction (RT-PCR) ……41
4.1.2 Detection of human SGLT1 and SGLT2 protein expression and localization by immunofluorescence microscopy ………41
4.2 Characterization of 1-NBDG ………………………………42
4.2.1 Synthesis of 1-NBDG ……………………………42
4.2.2 Optimal excitation and emission wavelengths and fluorescence standard curve of 1-NBDG …………………42
4.3 Optimization of the buffer system …………………43
4.3.1 Uptake buffer optimization ………………………43
4.3.2 Lysis buffer optimization ………………………44
4.4 Validation of 1-NBDG uptake ………………………44
4.4.1 Uptake of 1-NBDG in sodium and sodium-free (choline) buffer …44
4.4.2 Concentration-dependent inhibition of 1-NBDG uptake by D-glucose or AMG ………………………………………45
4.4.3 Kinetic studies of 1-NBDG ………………………46
4.5 Validation of the screening system for selective SGLT2 inhibitors ……47
4.5.1 Dose response curve of the inhibitory effect of phlorizin on hSGLT1 using 14C-AMG and 1-NBDG …………47
4.5.2 Dose response curve of the inhibitory effect of dapagliflozin on SGLT1 and SGLT2 using 1-NBDG …………48
4.6 Compound screening for selective SGLT2 inhibitors by the 1-NBDG system …………………………………………49
Chapter 5. Discussion ………………………………………76
5.1 Validation of cell-based system ……………………76
5.2 hSGLT1/COS-7 vs. hSGLT1/CHO-K1 stable clone ……76
5.3 Competition assays ...........................77
5.4 Comparison of glucose analogues – 1-NBDG, 2-NBDG and 14C-AMG…78
5.4.1 1-NBDG vs. 2-NBDG ………………………78
5.4.2 1-NBDG vs. 14C-AMG ……………………79
5.5 Uptake of 1-NBDG in cancer cell line ………80
Chapter 6. Conclusions ………………………………89
References …………………………………………91
dc.language.isoen
dc.subject螢光標定之葡萄糖類似物zh_TW
dc.subject放射性元素 (碳-14)標定之葡萄糖類似物zh_TW
dc.subject細胞平台zh_TW
dc.subject鈉離子依賴型葡萄糖轉運蛋白zh_TW
dc.subject第二型糖尿病zh_TW
dc.subjectdapagliflozinen
dc.subjectSodium-dependent glucose co-transporteren
dc.subjectIsotope (14C)-labeled glucose analogueen
dc.subjectfluorescence-labeled glucose analogueen
dc.subjectphlorizinen
dc.subjectType 2 diabetes mellitusen
dc.subject1-NBDGen
dc.title發展選擇性SGLT2抑制劑之非放射性細胞篩選平台zh_TW
dc.titleDevelopment of a Non-Radioactive Cell-Based Method for the Screening of Selective SGLT2 Inhibitorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁碧惠,林君榮
dc.subject.keyword第二型糖尿病,鈉離子依賴型葡萄糖轉運蛋白,細胞平台,放射性元素 (碳-14)標定之葡萄糖類似物,螢光標定之葡萄糖類似物,zh_TW
dc.subject.keywordType 2 diabetes mellitus,Sodium-dependent glucose co-transporter,Isotope (14C)-labeled glucose analogue,fluorescence-labeled glucose analogue,phlorizin,dapagliflozin,1-NBDG,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved