Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江運金(Yun-Jin Jiang)
dc.contributor.authorI-Chieh Chiangen
dc.contributor.author姜以倢zh_TW
dc.date.accessioned2021-06-16T23:16:13Z-
dc.date.available2025-03-03
dc.date.copyright2020-03-03
dc.date.issued2020
dc.date.submitted2020-02-24
dc.identifier.citationAgarwal, N., Dancik, G. M., Goodspeed, A., Costello, J. C., Owens, C., Duex, J. E., & Theodorescu, D. (2016). GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis. Cancer Research, 76(17), 5175-5185. doi:10.1158/0008-5472.can-16-1099
Avagyan, S., & Zon, L. I. (2016). Fish to Learn: Insights into Blood Development and Blood Disorders from Zebrafish Hematopoiesis. Human Gene Therapy, 27(4), 287-294. doi:10.1089/hum.2016.024
Barr, J. Y., Goodfellow, R. X., Colgan, D. F., & Colgan, J. D. (2017). Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division. Journal of Immunology, 198(10), 3978-3988. doi:10.4049/jimmunol.1602054
Berman, J., Hsu, K., & Look, A. T. (2003). Zebrafish as a model organism for blood diseases. British Journal of Haematology, 123(4), 568-576.
Blum, M., De Robertis, E. M., Wallingford, J. B., & Niehrs, C. (2015). Morpholinos: Antisense and Sensibility. Developmental Cell, 35(2), 145-149. doi:10.1016/j.devcel.2015.09.017
Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., & Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell, 10(4), 935-942.
Bulchand, S., Menon, S. D., George, S. E., & Chia, W. (2010). Muscle wasted: a novel component of the Drosophila histone locus body required for muscle integrity. Journal of Cell Science, 123(Pt 16), 2697-2707. doi:10.1242/jcs.063172
El-Brolosy, M. A., Kontarakis, Z., Rossi, A., Kuenne, C., Günther, S., Fukuda, N., . . . Stainier, D. Y. R. (2019). Genetic compensation triggered by mutant mRNA degradation. Nature, 568(7751), 193-197. doi:10.1038/s41586-019-1064-z
El-Brolosy, M. A., & Stainier, D. Y. R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet, 13(7), e1006780. doi:10.1371/journal.pgen.1006780
Friedman, L., Santa Anna-Arriola, S., Hodgkin, J., & Kimble, J. (2000). gon-4, a cell lineage regulator required for gonadogenesis in Caenorhabditis elegans. Developmental Biology, 228(2), 350-362. doi:10.1006/dbio.2000.9944
Herrmann, M. G., Durtschi, J. D., Wittwer, C. T., & Voelkerding, K. V. (2007). Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clinical Chemistry, 53(8), 1544-1548. doi:10.1373/clinchem.2007.088120
Hug, N., Longman, D., & Caceres, J. F. (2016). Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Research, 44(4), 1483-1495. doi:10.1093/nar/gkw010
Jin, H., Xu, J., & Wen, Z. (2007). Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood, 109(12), 5208-5214. doi:10.1182/blood-2007-01-069005
Kafina, M. D., & Paw, B. H. (2018). Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods in Molecular Biology, 1698, 11-36. doi:10.1007/978-1-4939-7428-3_2
Kimmel, C. B., Warga, R. M., & Schilling, T. F. (1990). Origin and organization of the zebrafish fate map. Development, 108(4), 581-594.
Kuryshev, V. Y., Vorobyov, E., Zink, D., Schmitz, J., Rozhdestvensky, T. S., Munstermann, E., . . . Wiemann, S. (2006). An anthropoid-specific segmental duplication on human chromosome 1q22. Genomics, 88(2), 143-151. doi:10.1016/j.ygeno.2006.02.002
Labastie, M. C., Cortes, F., Romeo, P. H., Dulac, C., & Peault, B. (1998). Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood, 92(10), 3624-3635.
Lerman, L. S., & Silverstein, K. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods in Enzymology, 155, 482-501.
Li, B.-S., Wang, X.-Y., Ma, F.-L., Jiang, B., Song, X.-X., & Xu, A.-G. (2011). Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis. PloS One, 6(12), e28078. doi:10.1371/journal.pone.0028078
Li, M., Zhao, L., Page-McCaw, P. S., & Chen, W. (2016). Zebrafish Genome Engineering Using the CRISPR-Cas9 System. Trends in Genetics, 32(12), 815-827. doi:10.1016/j.tig.2016.10.005
Li, Q., Liu, Z., Monroe, H., & Culiat, C. T. (2002). Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis, 23(10), 1499-1511. doi:10.1002/1522-2683(200205)23:10<1499::aid-elps1499>3.0.co;2-x
Lim, C. H., Chong, S. W., & Jiang, Y. J. (2009). Udu deficiency activates DNA damage checkpoint. Molecular Biology of the Cell, 20(19), 4183-4193. doi:10.1091/mbc.E09-02-0109
Liu, Y., Du, L., Osato, M., Teo, E. H., Qian, F., Jin, H., . . . Wen, Z. (2007). The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development. Blood, 110(1), 99-106. doi:10.1182/blood-2006-11-059204
Lu, P., Hankel, I. L., Knisz, J., Marquardt, A., Chiang, M. Y., Grosse, J., . . . Colgan, J. D. (2010). The Justy mutation identifies Gon4-like as a gene that is essential for B lymphopoiesis. Journal of Experimental Medicine, 207(7), 1359-1367. doi:10.1084/jem.20100147
Lui, K. O., Waldmann, H., & Fairchild, P. J. (2009). Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Current Stem Cell Research & Therapy, 4(1), 70-80.
McGrath, K. E., & Palis, J. (2005). Hematopoiesis in the yolk sac: more than meets the eye. Experimental Hematology, 33(9), 1021-1028. doi:10.1016/j.exphem.2005.06.012
Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., . . . Herbomel, P. (2006). Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity, 25(6), 963-975. doi:10.1016/j.immuni.2006.10.015
Okonechnikov, K., Golosova, O., & Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28(8), 1166-1167. doi:10.1093/bioinformatics/bts091
Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 86(8), 2766-2770.
Peng, Y., Clark, K. J., Campbell, J. M., Panetta, M. R., Guo, Y., & Ekker, S. C. (2014). Making designer mutants in model organisms. Development, 141(21), 4042-4054. doi:10.1242/dev.102186
Roy, B., Zhao, J., Yang, C., Luo, W., Xiong, T., Li, Y., . . . Kristiansen, K. (2018). CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Frontiers in Genetics, 9(240). doi:10.3389/fgene.2018.00240
Silverstein, R. A., & Ekwall, K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Current Genetics, 47(1), 1-17. doi:10.1007/s00294-004-0541-5
Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., . . . Ponten, F. (2017). A pathology atlas of the human cancer transcriptome. Science, 357(6352). doi:10.1126/science.aan2507
Valton, J., Daboussi, F., Leduc, S., Molina, R., Redondo, P., Macmaster, R., . . . Duchateau, P. (2012). 5'-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. The Journal of biological chemistry, 287(36), 30139-30150. doi:10.1074/jbc.M112.379966
Vergauwen, L., Schmidt, S. N., Stinckens, E., Maho, W., Blust, R., Mayer, P., . . . Knapen, D. (2015). A high throughput passive dosing format for the Fish Embryo Acute Toxicity test. Chemosphere, 139, 9-17. doi:10.1016/j.chemosphere.2015.05.041
Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., . . . Zoldos, V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Research, 44(12), 5615-5628. doi:10.1093/nar/gkw159
Vossen, R. H., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019
Wang, C. Y., Liang, Y. J., Lin, Y. S., Shih, H. M., Jou, Y. S., & Yu, W. C. (2004). YY1AP, a novel co-activator of YY1. Journal of Biological Chemistry, 279(17), 17750-17755. doi:10.1074/jbc.M310532200
Wang, H., & Stillman, D. J. (1993). Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Molecular and Cellular Biology, 13(3), 1805-1814.
Zizioli, D., Mione, M., Varinelli, M., Malagola, M., Bernardi, S., Alghisi, E., . . . Russo, D. (2019). Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochim Biophys Acta Mol Basis Dis, 1865(3), 620-633. doi:10.1016/j.bbadis.2018.12.015
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65027-
dc.description.abstract斑馬魚Udu 為人類GON4L的同源蛋白,編碼為一種核因子,其對於血管新生、造血作用以及細胞週期扮演重要的角色。在Udu蛋白中,目前被發現具有三種保留性區域:YY1BD (YY1-binding domain)、PAH (two paired amphipathic alpha –helix-like)以及SANT ( Swi3, Ada2, N-CoR, and TFIIIB-like)。Udu/GON4L的功能在其他物種中參與了不同的表型,而我們認為很可能是透過缺乏不同的保留性區域所導致。為了研究Udu中各個保留性區域的功能,我們使用了全長的Udu、N端Udu (具有兩個YY1BD)以及C端Udu (擁有PAH和SANT區域)進行mRNA的過度表達實驗。實驗的結果顯示,透過全長udu mRNA的注射可以拯救udutu24突變體所具有的造血作用和細胞凋亡缺陷,並且可以透過注射N端udu mRNA挽救血管生成的缺陷。為了進一步研究保留性區域的功能以及Udu與Udub之間的關係,我們利用CRISPR 系統在斑馬魚中進行基因敲除 (KO) 並在udu與udub中產生具有不同保留性區域的無義突變 (nonsense mutation),在udunn11突變體中(具有兩個YY1BD),與其他udu突變體一樣具有造血功能和血管生成缺陷並在早期發育階段中死亡。另一方面,在胚胎發育的過程中,udub基因敲除品系與其同齡的野生種之間並無顯著差異,但在3個月大的斑馬魚中我們發現udub突變體大量的死亡,並且具有較短的體長。於是我們對udub突變種進行解剖以及透過H&E、Sirius red以及PCNA染色,我們發現成魚的肝臟看似異常並且具有較低的細胞增生訊號。最後,我們發現udubnn32突變體中的udu RNA表現量下降,這顯示Udub有可能影響udu的mRNA表達。
總結來說,udutu24,udusq3和udunn11在胚胎發育過程中具有相似的缺陷,而udub的突變體主要影響成魚的發育以及死亡,也顯示著udu和udub分别在胚胎階段以及成魚階段分別扮演了很重要的角色。
zh_TW
dc.description.abstractUdu, a homolog of human GON4L, is a protein encodes a novel nuclear factor that has critical roles for angiogenesis, hematopoiesis, cell cycle, DNA replication, etc. The conserved domains in Udu include two YY1BD (YY1-binding domain), two PAH repeats (two paired amphipathic alpha –helix-like) and a SANT (Swi3, Ada2, N-CoR, and TFIIIB-like) domain. The function of Udu/GON4L participates in different phenotypes in other species, and we think it is likely to be caused by the lack of different conserved domains. To investigate the functions of different domains in Udu, N-terminus of Udu containing two YY1BD, and C-terminus of Udu containing PAH and SANT domains were used. While overexpressing the udu mRNA, hematopoiesis and apoptosis defects in udutu24 mutants were rescued with full-length udu and the angiogenesis defects were rescued by N-terminal sequence of udu mRNA, but not the C-terminal one. To further investigate the domain function in vivo and study the relationship between udu and udub, five CRISPR zebrafish knockout (KO) lines were generated, accompanied with different nonsense mutations in udu and udub. The morphology in udunn11, predicted containing two YY1BD, also had hematopoietic and angiogenic defects. On the other hand, there were no significant differences in udub knockout lines compared with siblings during embryonic development, but there was abnormal mass mortality in udub mutants from 3 month post fertilization (mpf) and their body length is shorter. Through H&E and PCNA stainings, we found that the anatomy and histology of the liver in udub adult fish were abnormal and had lower cell proliferation signals. Finally, we also found the udu RNA expression in udub mutants was down-regulated, which suggests that udub modulates the udu expression. In conclusion, udutu24, udusq3, and udunn11 have similar defects during embryonic development. In contrast, udub mainly affects the development and death of adult fish, suggesting that udu and udub play important roles in embryonic and adult stages, respectively.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:16:13Z (GMT). No. of bitstreams: 1
ntu-109-R06b43025-1.pdf: 4592763 bytes, checksum: 28a0c50e19dc7dbe0446476a5de2dc42 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Table of contents v
List of Figures vii
List of Tables ix
List of Appendices x
Chapter 1. Introduction 1
1.1 GON4L, Gon4l, Udu, Udub and Mute 1
1.2 The importance of GON4L conserved domains for diseases 2
1.3 Zebrafish as a good model to study early development 3
1.4 The technology to create udu/udub knockout mutants 6
1.5 The anatomy and histology observations for adult zebrafish 8
1.6 Specific aims 10
Chapter 2. Materials and Methods 11
2.1 Maintenance of Zebrafish 11
2.2 Genotyping of zebrafish udu and udub mutant embryos 11
2.3 Amplification of cDNA by RT-PCR 13
2.4 Microinjection experiment 14
2.5 Whole mount in situ hybridization (WISH) 16
2.6 TUNEL assay 17
2.7 CRISPR/Cas9 knock out 18
2.8 Histochemical stain 20
Chapter 3. Results I
In vitro overexpression of udu conserved segment 29
3.1 Overexpression analysis of hematopoietic functions in udutu24 mutants 29
3.2 Overexpression analysis of angiogenetic functions in udutu24 mutants 30
3.3 Overexpression analysis of apoptosis phenotypes in udutu24 mutants 30
Chapter 4. Results II
The developmental phenotypes observation in udu and udub mutants 32
4.1 The udu/udub knock lines created by using CRISPR/Cas9 32
4.2 udu mutants have similar defects during the embryonic stage 33
4.3 The non-sense mediated decay was triggered in udu mutants from 5’ end 35
4.4 The survival statistics and phenotypes checked in udub mutants 35
4.5 Anatomy and Histology of udub liver in adult fish 36
4.6 Udub with different conserved domain may adjusts the expression of udu differently 37
Chapter 5. Discussion 68
5.1 The role of udu and udub in zebrafish 68
5.2 Why udu expression cannot completely rescue the udu defects? 69
5.3 The similar defects in udu mutants in vivo 69
5.4 The challenge of knockout and knockdown 70
5.5 The reason for the low PCNA signal in udub mutant 71
5.6 The transcriptome modulation between udu and udub during the embryonic stage 71
5.7 The feedback model: Udu/Udub-YY1-udu 72
References 74
Appendices 81
List of Abbreviations 91
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject血管新生zh_TW
dc.subject血管發育zh_TW
dc.subject血球發育zh_TW
dc.subject斑馬魚zh_TW
dc.subjectapoptosisen
dc.subjectuduen
dc.subjectuduben
dc.subjecthematopoiesisen
dc.subjectangiogenesisen
dc.subjectzebrafishen
dc.title針對udu和udub基因的生化區域與發育功能之分析zh_TW
dc.titleThe biochemical domains analysis and developmental functions of udu and udub genesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee溫進德(Jin-Der Wen),黃聲蘋(Sheng-Ping Hwang)
dc.subject.keyword斑馬魚,血球發育,血管發育,血管新生,細胞凋亡,zh_TW
dc.subject.keywordzebrafish,udu,udub,hematopoiesis,angiogenesis,apoptosis,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202000512
dc.rights.note有償授權
dc.date.accepted2020-02-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved