請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65027完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江運金(Yun-Jin Jiang) | |
| dc.contributor.author | I-Chieh Chiang | en |
| dc.contributor.author | 姜以倢 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:16:13Z | - |
| dc.date.available | 2025-03-03 | |
| dc.date.copyright | 2020-03-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-24 | |
| dc.identifier.citation | Agarwal, N., Dancik, G. M., Goodspeed, A., Costello, J. C., Owens, C., Duex, J. E., & Theodorescu, D. (2016). GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis. Cancer Research, 76(17), 5175-5185. doi:10.1158/0008-5472.can-16-1099
Avagyan, S., & Zon, L. I. (2016). Fish to Learn: Insights into Blood Development and Blood Disorders from Zebrafish Hematopoiesis. Human Gene Therapy, 27(4), 287-294. doi:10.1089/hum.2016.024 Barr, J. Y., Goodfellow, R. X., Colgan, D. F., & Colgan, J. D. (2017). Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division. Journal of Immunology, 198(10), 3978-3988. doi:10.4049/jimmunol.1602054 Berman, J., Hsu, K., & Look, A. T. (2003). Zebrafish as a model organism for blood diseases. British Journal of Haematology, 123(4), 568-576. Blum, M., De Robertis, E. M., Wallingford, J. B., & Niehrs, C. (2015). Morpholinos: Antisense and Sensibility. Developmental Cell, 35(2), 145-149. doi:10.1016/j.devcel.2015.09.017 Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., & Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell, 10(4), 935-942. Bulchand, S., Menon, S. D., George, S. E., & Chia, W. (2010). Muscle wasted: a novel component of the Drosophila histone locus body required for muscle integrity. Journal of Cell Science, 123(Pt 16), 2697-2707. doi:10.1242/jcs.063172 El-Brolosy, M. A., Kontarakis, Z., Rossi, A., Kuenne, C., Günther, S., Fukuda, N., . . . Stainier, D. Y. R. (2019). Genetic compensation triggered by mutant mRNA degradation. Nature, 568(7751), 193-197. doi:10.1038/s41586-019-1064-z El-Brolosy, M. A., & Stainier, D. Y. R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet, 13(7), e1006780. doi:10.1371/journal.pgen.1006780 Friedman, L., Santa Anna-Arriola, S., Hodgkin, J., & Kimble, J. (2000). gon-4, a cell lineage regulator required for gonadogenesis in Caenorhabditis elegans. Developmental Biology, 228(2), 350-362. doi:10.1006/dbio.2000.9944 Herrmann, M. G., Durtschi, J. D., Wittwer, C. T., & Voelkerding, K. V. (2007). Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clinical Chemistry, 53(8), 1544-1548. doi:10.1373/clinchem.2007.088120 Hug, N., Longman, D., & Caceres, J. F. (2016). Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Research, 44(4), 1483-1495. doi:10.1093/nar/gkw010 Jin, H., Xu, J., & Wen, Z. (2007). Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood, 109(12), 5208-5214. doi:10.1182/blood-2007-01-069005 Kafina, M. D., & Paw, B. H. (2018). Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods in Molecular Biology, 1698, 11-36. doi:10.1007/978-1-4939-7428-3_2 Kimmel, C. B., Warga, R. M., & Schilling, T. F. (1990). Origin and organization of the zebrafish fate map. Development, 108(4), 581-594. Kuryshev, V. Y., Vorobyov, E., Zink, D., Schmitz, J., Rozhdestvensky, T. S., Munstermann, E., . . . Wiemann, S. (2006). An anthropoid-specific segmental duplication on human chromosome 1q22. Genomics, 88(2), 143-151. doi:10.1016/j.ygeno.2006.02.002 Labastie, M. C., Cortes, F., Romeo, P. H., Dulac, C., & Peault, B. (1998). Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood, 92(10), 3624-3635. Lerman, L. S., & Silverstein, K. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods in Enzymology, 155, 482-501. Li, B.-S., Wang, X.-Y., Ma, F.-L., Jiang, B., Song, X.-X., & Xu, A.-G. (2011). Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis. PloS One, 6(12), e28078. doi:10.1371/journal.pone.0028078 Li, M., Zhao, L., Page-McCaw, P. S., & Chen, W. (2016). Zebrafish Genome Engineering Using the CRISPR-Cas9 System. Trends in Genetics, 32(12), 815-827. doi:10.1016/j.tig.2016.10.005 Li, Q., Liu, Z., Monroe, H., & Culiat, C. T. (2002). Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis, 23(10), 1499-1511. doi:10.1002/1522-2683(200205)23:10<1499::aid-elps1499>3.0.co;2-x Lim, C. H., Chong, S. W., & Jiang, Y. J. (2009). Udu deficiency activates DNA damage checkpoint. Molecular Biology of the Cell, 20(19), 4183-4193. doi:10.1091/mbc.E09-02-0109 Liu, Y., Du, L., Osato, M., Teo, E. H., Qian, F., Jin, H., . . . Wen, Z. (2007). The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development. Blood, 110(1), 99-106. doi:10.1182/blood-2006-11-059204 Lu, P., Hankel, I. L., Knisz, J., Marquardt, A., Chiang, M. Y., Grosse, J., . . . Colgan, J. D. (2010). The Justy mutation identifies Gon4-like as a gene that is essential for B lymphopoiesis. Journal of Experimental Medicine, 207(7), 1359-1367. doi:10.1084/jem.20100147 Lui, K. O., Waldmann, H., & Fairchild, P. J. (2009). Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Current Stem Cell Research & Therapy, 4(1), 70-80. McGrath, K. E., & Palis, J. (2005). Hematopoiesis in the yolk sac: more than meets the eye. Experimental Hematology, 33(9), 1021-1028. doi:10.1016/j.exphem.2005.06.012 Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., . . . Herbomel, P. (2006). Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity, 25(6), 963-975. doi:10.1016/j.immuni.2006.10.015 Okonechnikov, K., Golosova, O., & Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28(8), 1166-1167. doi:10.1093/bioinformatics/bts091 Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 86(8), 2766-2770. Peng, Y., Clark, K. J., Campbell, J. M., Panetta, M. R., Guo, Y., & Ekker, S. C. (2014). Making designer mutants in model organisms. Development, 141(21), 4042-4054. doi:10.1242/dev.102186 Roy, B., Zhao, J., Yang, C., Luo, W., Xiong, T., Li, Y., . . . Kristiansen, K. (2018). CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Frontiers in Genetics, 9(240). doi:10.3389/fgene.2018.00240 Silverstein, R. A., & Ekwall, K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Current Genetics, 47(1), 1-17. doi:10.1007/s00294-004-0541-5 Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., . . . Ponten, F. (2017). A pathology atlas of the human cancer transcriptome. Science, 357(6352). doi:10.1126/science.aan2507 Valton, J., Daboussi, F., Leduc, S., Molina, R., Redondo, P., Macmaster, R., . . . Duchateau, P. (2012). 5'-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. The Journal of biological chemistry, 287(36), 30139-30150. doi:10.1074/jbc.M112.379966 Vergauwen, L., Schmidt, S. N., Stinckens, E., Maho, W., Blust, R., Mayer, P., . . . Knapen, D. (2015). A high throughput passive dosing format for the Fish Embryo Acute Toxicity test. Chemosphere, 139, 9-17. doi:10.1016/j.chemosphere.2015.05.041 Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., . . . Zoldos, V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Research, 44(12), 5615-5628. doi:10.1093/nar/gkw159 Vossen, R. H., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019 Wang, C. Y., Liang, Y. J., Lin, Y. S., Shih, H. M., Jou, Y. S., & Yu, W. C. (2004). YY1AP, a novel co-activator of YY1. Journal of Biological Chemistry, 279(17), 17750-17755. doi:10.1074/jbc.M310532200 Wang, H., & Stillman, D. J. (1993). Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Molecular and Cellular Biology, 13(3), 1805-1814. Zizioli, D., Mione, M., Varinelli, M., Malagola, M., Bernardi, S., Alghisi, E., . . . Russo, D. (2019). Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochim Biophys Acta Mol Basis Dis, 1865(3), 620-633. doi:10.1016/j.bbadis.2018.12.015 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65027 | - |
| dc.description.abstract | 斑馬魚Udu 為人類GON4L的同源蛋白,編碼為一種核因子,其對於血管新生、造血作用以及細胞週期扮演重要的角色。在Udu蛋白中,目前被發現具有三種保留性區域:YY1BD (YY1-binding domain)、PAH (two paired amphipathic alpha –helix-like)以及SANT ( Swi3, Ada2, N-CoR, and TFIIIB-like)。Udu/GON4L的功能在其他物種中參與了不同的表型,而我們認為很可能是透過缺乏不同的保留性區域所導致。為了研究Udu中各個保留性區域的功能,我們使用了全長的Udu、N端Udu (具有兩個YY1BD)以及C端Udu (擁有PAH和SANT區域)進行mRNA的過度表達實驗。實驗的結果顯示,透過全長udu mRNA的注射可以拯救udutu24突變體所具有的造血作用和細胞凋亡缺陷,並且可以透過注射N端udu mRNA挽救血管生成的缺陷。為了進一步研究保留性區域的功能以及Udu與Udub之間的關係,我們利用CRISPR 系統在斑馬魚中進行基因敲除 (KO) 並在udu與udub中產生具有不同保留性區域的無義突變 (nonsense mutation),在udunn11突變體中(具有兩個YY1BD),與其他udu突變體一樣具有造血功能和血管生成缺陷並在早期發育階段中死亡。另一方面,在胚胎發育的過程中,udub基因敲除品系與其同齡的野生種之間並無顯著差異,但在3個月大的斑馬魚中我們發現udub突變體大量的死亡,並且具有較短的體長。於是我們對udub突變種進行解剖以及透過H&E、Sirius red以及PCNA染色,我們發現成魚的肝臟看似異常並且具有較低的細胞增生訊號。最後,我們發現udubnn32突變體中的udu RNA表現量下降,這顯示Udub有可能影響udu的mRNA表達。
總結來說,udutu24,udusq3和udunn11在胚胎發育過程中具有相似的缺陷,而udub的突變體主要影響成魚的發育以及死亡,也顯示著udu和udub分别在胚胎階段以及成魚階段分別扮演了很重要的角色。 | zh_TW |
| dc.description.abstract | Udu, a homolog of human GON4L, is a protein encodes a novel nuclear factor that has critical roles for angiogenesis, hematopoiesis, cell cycle, DNA replication, etc. The conserved domains in Udu include two YY1BD (YY1-binding domain), two PAH repeats (two paired amphipathic alpha –helix-like) and a SANT (Swi3, Ada2, N-CoR, and TFIIIB-like) domain. The function of Udu/GON4L participates in different phenotypes in other species, and we think it is likely to be caused by the lack of different conserved domains. To investigate the functions of different domains in Udu, N-terminus of Udu containing two YY1BD, and C-terminus of Udu containing PAH and SANT domains were used. While overexpressing the udu mRNA, hematopoiesis and apoptosis defects in udutu24 mutants were rescued with full-length udu and the angiogenesis defects were rescued by N-terminal sequence of udu mRNA, but not the C-terminal one. To further investigate the domain function in vivo and study the relationship between udu and udub, five CRISPR zebrafish knockout (KO) lines were generated, accompanied with different nonsense mutations in udu and udub. The morphology in udunn11, predicted containing two YY1BD, also had hematopoietic and angiogenic defects. On the other hand, there were no significant differences in udub knockout lines compared with siblings during embryonic development, but there was abnormal mass mortality in udub mutants from 3 month post fertilization (mpf) and their body length is shorter. Through H&E and PCNA stainings, we found that the anatomy and histology of the liver in udub adult fish were abnormal and had lower cell proliferation signals. Finally, we also found the udu RNA expression in udub mutants was down-regulated, which suggests that udub modulates the udu expression. In conclusion, udutu24, udusq3, and udunn11 have similar defects during embryonic development. In contrast, udub mainly affects the development and death of adult fish, suggesting that udu and udub play important roles in embryonic and adult stages, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:16:13Z (GMT). No. of bitstreams: 1 ntu-109-R06b43025-1.pdf: 4592763 bytes, checksum: 28a0c50e19dc7dbe0446476a5de2dc42 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Table of contents v List of Figures vii List of Tables ix List of Appendices x Chapter 1. Introduction 1 1.1 GON4L, Gon4l, Udu, Udub and Mute 1 1.2 The importance of GON4L conserved domains for diseases 2 1.3 Zebrafish as a good model to study early development 3 1.4 The technology to create udu/udub knockout mutants 6 1.5 The anatomy and histology observations for adult zebrafish 8 1.6 Specific aims 10 Chapter 2. Materials and Methods 11 2.1 Maintenance of Zebrafish 11 2.2 Genotyping of zebrafish udu and udub mutant embryos 11 2.3 Amplification of cDNA by RT-PCR 13 2.4 Microinjection experiment 14 2.5 Whole mount in situ hybridization (WISH) 16 2.6 TUNEL assay 17 2.7 CRISPR/Cas9 knock out 18 2.8 Histochemical stain 20 Chapter 3. Results I In vitro overexpression of udu conserved segment 29 3.1 Overexpression analysis of hematopoietic functions in udutu24 mutants 29 3.2 Overexpression analysis of angiogenetic functions in udutu24 mutants 30 3.3 Overexpression analysis of apoptosis phenotypes in udutu24 mutants 30 Chapter 4. Results II The developmental phenotypes observation in udu and udub mutants 32 4.1 The udu/udub knock lines created by using CRISPR/Cas9 32 4.2 udu mutants have similar defects during the embryonic stage 33 4.3 The non-sense mediated decay was triggered in udu mutants from 5’ end 35 4.4 The survival statistics and phenotypes checked in udub mutants 35 4.5 Anatomy and Histology of udub liver in adult fish 36 4.6 Udub with different conserved domain may adjusts the expression of udu differently 37 Chapter 5. Discussion 68 5.1 The role of udu and udub in zebrafish 68 5.2 Why udu expression cannot completely rescue the udu defects? 69 5.3 The similar defects in udu mutants in vivo 69 5.4 The challenge of knockout and knockdown 70 5.5 The reason for the low PCNA signal in udub mutant 71 5.6 The transcriptome modulation between udu and udub during the embryonic stage 71 5.7 The feedback model: Udu/Udub-YY1-udu 72 References 74 Appendices 81 List of Abbreviations 91 | |
| dc.language.iso | en | |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 血管發育 | zh_TW |
| dc.subject | 血球發育 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | apoptosis | en |
| dc.subject | udu | en |
| dc.subject | udub | en |
| dc.subject | hematopoiesis | en |
| dc.subject | angiogenesis | en |
| dc.subject | zebrafish | en |
| dc.title | 針對udu和udub基因的生化區域與發育功能之分析 | zh_TW |
| dc.title | The biochemical domains analysis and developmental functions of udu and udub genes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 溫進德(Jin-Der Wen),黃聲蘋(Sheng-Ping Hwang) | |
| dc.subject.keyword | 斑馬魚,血球發育,血管發育,血管新生,細胞凋亡, | zh_TW |
| dc.subject.keyword | zebrafish,udu,udub,hematopoiesis,angiogenesis,apoptosis, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202000512 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 4.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
