請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65023完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立義(Leeyih Wang) | |
| dc.contributor.author | Yi-Min Chang | en |
| dc.contributor.author | 張義民 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:15:56Z | - |
| dc.date.available | 2017-08-09 | |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | 1.4 參考文獻
[1] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys., 25, 676 (1954). [2] W. Guter, J. Schone, S. P. Philipps, Appl. Phys. Lett., 94, 123505 (2009). [3] M. Manceau, D. Angmo, M. Jorgensen, F. C. Krebs, Organic Electronics. 12, 566 (2011). [4] Hagemann, M. Bjerring, N. C. Nielsen, F. C. Krebs, Solar Energy Materials & Solar Cell, 92, 1327 (2008). [5] F. C. Krebs, Organic Electronics, 10, 761 (2009). [6] J. A. Mikroyannidis, A. N. Kabanakis, S. S. Sharma, and G. D. Sharma, Adv. Funct. Mater., 21, 746 (2011). [7] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Nature Photonics, 3, 649 (2009). [8] Y. Sun, M. Wang, X. Gong, J. H. Seo, B. B. Y. Hsu, F. Wudl, and A. J. Heeger, J. Mater. Chem., 21, 1365 (2011). [9] R. F. Service, Science, 15, 293 (2011). [10] http://www.nrel.gov/news/press/2012/1801.html [11] http://www.konarka.com/ [12] http://www.nrel.gov/ncpv/ [13] C. J. Brabec, J. R. Durrant, MRS Bull., 33, 670 (2008). 2.4 參考文獻 [1] K. Ghosh and T. Feng, J. Appl. Phys., 49, 5982 (1978). [2] S. N. Chen, A. J. Heeger, Z. Kiss, A. G. MacDiarmid, S. C. Gau and D. L. Peebles Appl. Phys. Lett., 36, 96 (1980). [3] W. Tang, Appl. Phys. Lett., 48, 183 (1986). [4] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett., 68, 3120 (1996). [5] G. Yu, J. Gao, J. C. Hummelen, F. Wudi and A. J. Heeger, Science, 270, 1789 (1995). [6] W. Ma, C. Yang, X. Goug, K. Lee and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). [7] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater., 4, 864 ( 2005). [8] J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H. Park, J. K. K and K. Cho, Adv. Funct. Mater., 20, 540 (2010). [9] K. M. Coakley and M. D. McGehee, Chem. Mater., 16, 4533 (2004). [10] Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu, Y. L. Wang and Y. Li, Angew. Chem. Int. Ed., 50, 9386 (2011). [11] M. C. Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Nature Mater., 7, 158 (2008). [12] Z. Xu, L.M. Chen, G. Yang, C.H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, and Y. Yang, Adv. Funct. Mater., 19, 1227 (2009). [13] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006). [14] G. K. Mor, K. S., M. Paulose, O. K. Varghese, and C. A. Grimes, Appl. Phys. Lett., 91, 152111 (2007). [15] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, and A. K.-Y. Jen, J. Mater. Chem., 18, 5113 (2008). [16] S. K. Hau, H. L. Yip, H. Ma and A. K.-Y. Jen, Appl. Phys. Lett., 93, 233304 (2008). [17] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, Appl. Phys. Lett., 92, 253301 (2008). [18] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater., 6, 497 (2007). -41- [19] H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonic, 3, 649 (2009). [20] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, Angew. Chem. Int. Ed., 123, 9871 (2011). [21] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X, Guo, Y. Li, J. Hou, J. You, and Y. Yang, Adv. Mater., 24, 3046 (2012). [22] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature, 318 , 162 (1985). [23] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 258, 1474 (1992). [24] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995). [25] R. S. Ruoff, Doris S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem., 97, 3379 (1993). [26] L. Zheng, Q. Zhou, X. Deng, M. Yuan, G. Yu, Y. Cao, J. Phys. Chem. B, 108, 11921 (2004). [27] G. Zhao, Y. He, Z. Xu, J. Hou, M. Zhang,J. Min, H. Y. Chen, M. Ye, Z. Hong, Y. Yang and Y. Li, Adv. Funct. Mater., 20, 1480 (2010). [28] H. Zhao, X. Guo, H. Tian, C. Li, Z. Xie, Y. Geng and F. Wang, J. Mater. Chem., 20, 3092 (2010). [29] P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Y. Mayorova, A. E. Goryachev, A. S. Peregudov, R. N. Lyubovskaya, G. Gobsch, N. S. Sariciftci, and V. F. Razumov, Adv. Funct. Mater., 19, 779 (2009). [30] R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. V. Keuren, B. C. Holloway and M. Drees, Nat. Mater., 8, 208 (2009). [31] F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon and J. C. Hummelen, Org. Lett., 9, 551 (2007). [32] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Adv. Mater., 20, 2116 (2008). [33] M. Lenes, G.. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater., 20, 2116 (2008). [34] Y. He, H. Y. Chen, J. Hou, Y. F. Li, J. Am. Chem. Soc., 132, 1377 (2010). -42- [35] G. Zhao, Y. He, Y. F. Li, Adv. Mater., 22, 4355 (2010). [36] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J. C. Hummelen, Chem. Mater., 18, 3068 (2006). [37] Y. He, G Zhao, B. Peng and Y. Li, Adv. Funct. Mater., 20, 3383 (2010). [38] Varotto, N. D. Treat, J. Jo, C. G. Shuttle, N. A. Batara, F. G. Brunetti, J. H. Seo, M. L. Chabinyc, C. J. Hawker, A. J. Heeger and F. Wudl, Angew. Chem. Int. Ed., 50, 5166 (2011). [39] M. Murata, Y. Morinaka, Y. Murata, O. Yoshikawa, T. Sagawa and S. Yoshikawa, Chem. Commun., 47, 7335 (2011). [40] L. Wang, W. B. Zhang, R. M. V. Horn, Y. Tu, X. Gong, S. Z. D. Cheng, Y. Sun, M. Tong, J. Seo, B. B. Y. Hsu and A. J. Heeger, Adv. Mater., 23, 2951 (2011). [41] J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma and G. D. Sharma, J. Phys. Chem. C, 115, 7806 (2011). [42] T. L. Chen, Y. Zhang, P. Smith, A. Tamayo, Y. Liu and B. Ma, ACS Appl. Mater. Interfaces, 3, 2275 (2011). [43] C. H. Woo, B. C. Thompson, B. J. Kim, M. F. Toney and J. M. J. Fre’chet, J. Am. Chem. Soc., 130, 16324 (2008). [44] Y. Zhang, H. L. Yip, O. Acton, S. K. Hau, F. Huang and A. K.-Y. Jen, Chem. Mater., 21, 2599 (2009). [45] Y. J. Cheng, M. H. Liao, C. Y. Chang, W. S. Kao, C. E. Wu and C. S. Hsu, Chem. Mater., 23, 4056 (2011). [46] Y. J. Cheng, C. H. Hsieh, P. J. Li and C. S. Hsu, Adv. Funct. Mater., 21, 1723 (2011). [47] M. M. Mandoc, L. J. A. Koster and P. W. M. Blom, Appl. Phys. Lett., 90, 133504 (2007). [48] C. Z. Li, S. C. Chien, H. L. Yip, C. C. Chueh, F. C. Chen, Y. Matsuo, E. Nakamura and A. K. Y. Jen, Chem. Commun., 47, 10082 (2011). 3.5參考文獻 [1] W. Ma, C. Yang, X. Goug, K. Lee and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005). [2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature materials. 4, 864 ( 2005). [3] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J. C. Hummelen, Chem. Mater., 18, 3068 (2006). [4] M. Murata, Y. Morinaka, Y. Murata, O. Yoshikawa, T. Sagawa and S. Yoshikawa, Chem. Commun., 47, 7335 (2011). [5] C. L. Wang, W. B. Zhang, R. M. V. Horn, Y. Tu, X. Gong, S. Z. D. Cheng, Y. Sun, M. Tong, J. Seo, B. B. Y. Hsu and A. J. Heeger, Adv. Mater., 23, 2951 (2011). [6] J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma and G. D. Sharma, J. Phys. Chem. C, 115, 7806 (2011). [7] T. L. Chen, Y. Zhang, P. Smith, A. Tamayo, Y. Liu and B. Ma, ACS Appl. Mater. Interfaces, 3, 2275 (2011). [8] M. Velusamy, K. R. J. Thomas, J. T. Lin,Y. C. Hsu and K. C. Ho, Org. Lett., 7, 1899 (2005). [9] S. G. Liu, L. Shu, J. Rivera, H. Liu, J. M. Raimundo, J. Roncali, A. Gorgues, L. Echegoyen. J. Org. Chem., 64, 4884 (1999). [10] M. Prato, M. Maggini, Accts. Chem. Res., 31, 519 (1998). [11] H. Zhao, X. Guo, H. Tian, C. Li, Z. Xie, Y. Geng and F. Wang, J. Mater. Chem., 20, 3092 (2010). [12] C. H. Woo, B. C. Thompson, B. J. Kim, M. F. Toney and J. M. J. Fre’chet, J. Am. Chem. Soc., 130, 16324 (2008). [13] Y. Zhang, H. L. Yip, O. Acton, S. K. Hau, F. Huang and A. K.-Y. Jen, Chem. Mater., 21, 2599 (2009). [14] Y. J. Cheng, M. H. Liao, C. Y. Chang, W. S. Kao, C. E. Wu and C. S. Hsu, Chem. Mater., 23, 4056 (2011). [15] Y. J. Cheng, C. H. Hsieh, P. J. Li and C. S. Hsu, Adv. Funct. Mater., 21, 1723 (2011). 4.5 參考文獻 [1]R. S. Ruoff, Doris S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem., 97, 3379 (1993). [2]W. Ma, C. Yang, X. Goug, K. Lee and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). [3]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater., 4, 864 ( 2005). [4]R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. V. Keuren, B. C. Holloway and M. Drees, Nat. Mater., 8, 208 (2009). [5]M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Adv. Mater., 20, 2116 (2008). [6]F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon and J. C. Hummelen, Org. Lett., 9, 551 (2007). [7]S. G. Liu, L. Shu, J. Rivera, H. Liu, J. M. Raimundo, J. Roncali, A. Gorgues, L. Echegoyen. J. Org. Chem., 64, 4884 (1999). [8]M. Prato, M. Maggini, Accts. Chem. Res., 31, 519 (1998). [9]Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 23, 1679 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65023 | - |
| dc.description.abstract | 本論文分為兩個研究主題,探討使用不同官能化修飾的富勒烯衍生物作為電子受體,對於高分子太陽能電池之光伏特性的影響。第一個研究主題中,我們為了改善碳六十在可見光區吸收能力較弱的缺點,選用四種具有可見光區吸收的共軛基團做為碳六十上的取代基,合成出一系列具有可見光吸收的碳六十衍生物。
實驗中我們發現,將四種共軛分子鍵結在碳六十上時,它們各自的吸光範圍皆不相同,在可見光區也可達到比PCBM 更高的吸收係數。並且,碳六十上的共軛基團經可見光激發後,產生之激子可快速的轉移至C60 上,形成自由的電子與電洞。 作為電子受體並與聚(3-己基噻吩) (P3HT)混摻後所製備之太陽能電池,其元件效率最高可達到2.54%。雖然,效率不及於P3HT:PCBM 所製備之元件,但其中以 2,5-bis(4-hexylthiophen-2-yl)thiophene-fulleropyrrolidine (BTTC)作為電子受體的電池元件,在IPCE 圖譜350~400 nm 的光致電子的轉換仍可高出PCBM 達7%。這顯示,我們在碳六十上導入一吸光基團確實可對高分子太陽能電池的Jsc 產生貢獻。 此外,我們也成功利用BTTC、BTBTC 和BTBSeC 加熱後不易聚集的非晶特性,製備出具有優異熱穩定性的高分子太陽能電池。主動層在110 ℃下,連續加熱300分鐘後,其元件效率依舊維持不變。 第二部分的研究主題,是探討推電子的烷氧基團接在苯環鄰、對位置的碳六十衍生物對於元件效能的影響。導入推電子基團(2-ethylhexyloxy)的碳六十衍生物, 其LUMO 能階可高出PCBM 0.04~0.05 eV,並提升元件的Voc 大約30~50 mV。推電子基團接在苯環不同位置的碳六十衍生物,並不影響其光學特性,但會造成溶 解度上的差異。我們發現受到結構分子空間和材料本質聚集性的影響,對位取代的C60 衍生物其溶解度會低於對位取代的C60 達兩倍之多。並且,材料溶解度上的 差異性,亦造成載子遷移率以及元件主動層的異質接面形態有所不同。推電子基團在苯環鄰、對位置的碳六十衍生物作為電子受體,應用在P3HT 為予體材料之反式高分子太陽能電池中,最佳化的光電轉換效率可達3.01%和3.37%。 | zh_TW |
| dc.description.abstract | This thesis mainly studies the photovoltaic behaviors of polymer solar cells in which new C60 derivatives that bear various functional groups were applied as electron acceptors. It essentially consists of two parts. Firstly, to overcome the drawback of low light˗absorptivity of C60 in the visible region, four different conjugated groups were
chemically bounded onto the N-methyl fulleropyrrolidine as a substituent. These molecules display distinct absorption bands and have a much higher molar absortivity than that of PCBM in the visible range. The photoluminescence (PL)experiments indicate a smooth transfer of photoexcited electrons from the conjugated substituent to the C60 cage, thereby creating free electron/hole pairs. Solar devices fabricated from the blends of poly(3-hexylthiophene) (P3HT) and these fullerene derivatives exhibit the best power conversion efficiency of 2.54%. More importantly, the comparison of the IPCE spectra of the P3HT/PCBM and P3HT/2,5-bis(4-hexylthiophen-2-yl)thiophenefulleropyrrolidine (BTTC) devices reveals the IPCE of the latter cell is higher than that of the former cell by about 7% in the wavelength range of 350~400 nm, which corresponds to the absorption band of terthiophene. This finding clearly verifies the excitons generated in the conjugated substituent can make contribution to the photocurrent. In addition, the thermal stability of the cells based on the blend of P3HT and these four C60 derivatives was examined by aging the film of photoavtive blend at 110 °C for various intervals before the evaporation of the metal cathode. Both OM and TEM images of the thermally aged blend films show the amorphous nature of BTTC,BTBTC and BTBSeC effectively suppresses the thermal-driven aggregation of C60 adducts during aging process, leading to a extremely stable blend morphology. Consequently, these devices almost retain their initial PCE even after storing at 110 °C for 300 minutes. In the second part, the influence of introducing an electron-donating, alkoxy, group into the C60 derivative and the anchoring position of such substituent on the photovoltaics of polymer solar cells, was investigated. As expected, the LUMO of these alkoxy-bearing fulleropyrrolidines is higher than that of PCBM by 30~50 mV. Although the binding position of the alkoxy moiety on N-methyl-2-phenyl fulleropyrrolidine has no obvious effect on the optical properties of the molecule, the para-substituted compound (4EHOBC) has a good solubility, which is about twice higher than that of the ortho-substituted compound (2EHOBC). This difference subsequently affects the carrier mobilities and the film morphology of their blends with P3HT. As a result, the P3HT/4EHOBC and P3HT/2EHOBC devices exhibit an optimal power conversion efficiency of 3.37% and 3.01%, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:15:56Z (GMT). No. of bitstreams: 1 ntu-101-R99549006-1.pdf: 11000685 bytes, checksum: c5563bab3c14cfc10bfd96f77ed10154 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XVI 第一章 緒論 .................................................................................................................... 1 1.1 前言 ................................................................................................................... 1 1.2 高分子太陽能電池之工作原理 ....................................................................... 3 1.3 太陽能電池之特性參數 ................................................................................... 4 1.3.1 光電轉換效率 ........................................................................................ 4 1.3.2 外部量子效應 ........................................................................................ 5 1.3.3 等效電路 ................................................................................................ 6 1.4 參考文獻 ........................................................................................................... 8 第二章 高分子太陽能電池之文獻回顧 ........................................................................ 9 2.1 高分子太陽能電池之結構發展 ....................................................................... 9 2.1.1 單層結構 ................................................................................................ 9 2.1.2 雙層異質接面結構 ................................................................................ 9 2.1.3 混摻異質接面結構 .............................................................................. 10 2.1.4 有序異質接面結構 .............................................................................. 11 2.1.5 有序混摻異質接面結構 ...................................................................... 11 2.1.6 反置混摻異質接面結構 ...................................................................... 13 2.2 高分子太陽能電池之新穎材料 ..................................................................... 16 2.2.1 共軛高分子 .......................................................................................... 16 2.2.2 富勒烯衍生物 ...................................................................................... 20 2.3 研究動機 ......................................................................................................... 39 2.4 參考文獻 ......................................................................................................... 40 第三章 具有共軛基團之富勒烯吡咯烷對於聚(3-己基噻吩)衍生太陽能電池之光伏 特性的影響探討 ............................................................................................................ 43 3.1 前言與研究目的 ............................................................................................. 43 3.2 結果與討論 ..................................................................................................... 44 3.2.1 共軛分子之特性分析 .......................................................................... 44 3.2.2 碳六十衍生物的合成 .......................................................................... 47 3.2.3 碳六十衍生物之光學分析 .................................................................. 47 3.2.4 碳六十之電化學特性分析 .................................................................. 52 3.2.5 碳六十衍生物之光電特性分析 .......................................................... 55 3.2.6 P3HT:碳六十衍生物高分子太陽能電池之光伏特性分析 ................ 57 3.2.7 熱穩定性測試 ...................................................................................... 67 3.3 結論 ................................................................................................................. 83 3.4 實驗方法 ......................................................................................................... 84 3.4.1 高分子太陽能電池之製作方法及流程 .............................................. 84 3.4.2 儀器設備及量測樣品製備 .................................................................. 90 3.5 參考文獻 ......................................................................................................... 92 第四章 具有烷氧基團的富勒烯吡咯烷作為電子受體對於反式高分子太陽能電池 之光伏特性的影響探討 ................................................................................................ 94 4.1 前言與研究目的 ............................................................................................. 94 4.2 結果與討論 ..................................................................................................... 96 4.2.1 碳六十衍生物特性分析 ...................................................................... 96 4.2.2 碳六十衍生物之光學分析 .................................................................. 99 4.2.3 碳六十衍生物之電化學分析 ............................................................ 100 4.2.4 碳六十衍生物之光電特性分析 ......................................................... 103 4.2.5 P3HT:碳六十衍生物高分子太陽能電池之光伏特性分析 .............. 105 4.3 結論 ............................................................................................................... 121 4.4 實驗方法 ....................................................................................................... 122 4.4.1 反式高分子太陽能電池之製作方法及流程 .................................... 122 4.4.2 儀器設備及量測樣品製備方法 ........................................................ 123 4.5 參考文獻 ....................................................................................................... 126 第五章 總結與未來展望 ............................................................................................ 127 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電子受體 | zh_TW |
| dc.subject | 推電子基團 | zh_TW |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | 形態穩定性 | zh_TW |
| dc.subject | 聚(3-己基噻 | zh_TW |
| dc.subject | morphological stability | en |
| dc.subject | electron acceptor | en |
| dc.subject | electron-donating group | en |
| dc.subject | polymer solar cells | en |
| dc.subject | poly(3-hexylthiophene) | en |
| dc.title | 具有共軛基團及烷氧基之富勒烯吡咯烷作為電子受體對於高分子太陽能電池之光伏特性的影響探討 | zh_TW |
| dc.title | The Photovoltaic Behavior of Polymer Solar Cells Using Fulleropyrrolidines with Conjugated and Alkoxy
Substituent as Electron Acceptor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),郭昌恕(Changshu Kuo),蘇昭瑾 | |
| dc.subject.keyword | 高分子太陽能電池,電子受體,聚(3-己基噻,吩),形態穩定性,推電子基團, | zh_TW |
| dc.subject.keyword | polymer solar cells,electron acceptor,poly(3-hexylthiophene),morphological stability,electron-donating group, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 10.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
