請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65021完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
| dc.contributor.author | Hou-Chun Sun | en |
| dc.contributor.author | 孫厚鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:15:49Z | - |
| dc.date.available | 2017-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-02 | |
| dc.identifier.citation | 1. Croce, C.M., Oncogenes and cancer. N Engl J Med, 2008. 358(5): p. 502-11.
2. Knudson, A.G., Two genetic hits (more or less) to cancer. Nat Rev Cancer, 2001. 1(2): p. 157-62. 3. Merlo, L.M., et al., Cancer as an evolutionary and ecological process. Nat Rev Cancer, 2006. 6(12): p. 924-35. 4. Alberts, B., Molecular biology of the cell. 4th ed2002 xxxiv, 1548 p. 5. Polovich, M., J.M. White, and L.O. Kelleher, Chemotherapy and biotherapy guidelines and recommendations for practice. 2nd ed2005 xiii, 246 p. 6. Byrne, J.D., T. Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev, 2008. 60(15): p. 1615-26. 7. Singhal, S., S. Nie, and M.D. Wang, Nanotechnology applications in surgical oncology. Annu Rev Med, 2010. 61: p. 359-73. 8. Airley, R., Cancer chemotherapy2009 x, 341 p., 8 p. of plates. 9. Hartwell, L.H. and M.B. Kastan, Cell cycle control and cancer. Science, 1994. 266(5192): p. 1821-8. 10. Zamble, D.B., et al., Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry, 1996. 35(31): p. 10004-13. 11. Gonzalez, V.M., et al., Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol, 2001. 59(4): p. 657-63. 12. Shah, M.A. and G.K. Schwartz, Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res, 2001. 7(8): p. 2168-81. 13. Fishel, M.L., et al., Effect of cell cycle inhibition on Cisplatin-induced cytotoxicity. J Pharmacol Exp Ther, 2005. 312(1): p. 206-13. 14. Gao, Q., et al., Influence of chk1 and plk1 silencing on radiation- or cisplatin-induced cytotoxicity in human malignant cells. Apoptosis, 2006. 11(10): p. 1789-800. 15. Palmer, C.G., et al., The action of the vincaleukolastine on mitosis in vitro. Exp Cell Res, 1960. 20: p. 198-201. 16. Cutts, J.H., The effect of vincaleukoblastine on dividing cells in vivo. Cancer Res, 1961. 21: p. 168-72. 17. Mujagic, H., et al., Effects of vincristine on cell survival, cell cycle progression, and mitotic accumulation in asynchronously growing Sarcoma 180 cells. Cancer Res, 1983. 43(8): p. 3591-7. 18. Ferguson, P.J. and C.E. Cass, Differential cellular retention of vincristine and vinblastine by cultured human promyelocytic leukemia HL-60/Cl cells: the basis of differential toxicity. Cancer Res, 1985. 45(11 Pt 1): p. 5480-8. 19. Ehrhardt, H., et al., Optimized anti-tumor effects of anthracyclines plus Vinca alkaloids using a novel, mechanism-based application schedule. Blood, 2011. 118(23): p. 6123-31. 20. Jordan, M.A. and L. Wilson, Microtubules as a target for anticancer drugs. Nat Rev Cancer, 2004. 4(4): p. 253-65. 21. Lowe, J., et al., Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol, 2001. 313(5): p. 1045-57. 22. Manfredi, J.J. and S.B. Horwitz, Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther, 1984. 25(1): p. 83-125. 23. Wahl, A.F., et al., Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med, 1996. 2(1): p. 72-9. 24. Bharadwaj, R. and H. Yu, The spindle checkpoint, aneuploidy, and cancer. Oncogene, 2004. 23(11): p. 2016-27. 25. Brito, D.A., Z. Yang, and C.L. Rieder, Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol, 2008. 182(4): p. 623-9. 26. Liu, S.Y., et al., Molecular mechanism of cell apoptosis by paclitaxel and pirarubicin in a human osteosarcoma cell line. Chemotherapy, 2010. 56(2): p. 101-7. 27. Jia, G., et al., [Effects of paclitaxel and gefitinib on the proliferation and cell cycle of human lung adenocarcinoma cell SPC-A1.]. Zhongguo Fei Ai Za Zhi, 2008. 11(3): p. 339-44. 28. Wohlhueter, R.M., R.S. McIvor, and P.G. Plagemann, Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol, 1980. 104(3): p. 309-19. 29. Peters, G.J., et al., Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta, 2002. 1587(2-3): p. 194-205. 30. Thomas, D.M. and J.R. Zalcberg, 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin Exp Pharmacol Physiol, 1998. 25(11): p. 887-95. 31. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003. 3(5): p. 330-8. 32. Li, M.H., et al., Effect of 5-fluorouracil on G1 phase cell cycle regulation in oral cancer cell lines. Oral Oncol, 2004. 40(1): p. 63-70. 33. Plunkett, W., et al., Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol, 1995. 22(4 Suppl 11): p. 3-10. 34. Pereira, S., P.A. Fernandes, and M.J. Ramos, Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. J Comput Chem, 2004. 25(10): p. 1286-94. 35. Mini, E., et al., Cellular pharmacology of gemcitabine. Ann Oncol, 2006. 17 Suppl 5: p. v7-12. 36. Pauwels, B., et al., Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys, 2003. 57(4): p. 1075-83. 37. Cappella, P., et al., Cell cycle effects of gemcitabine. Int J Cancer, 2001. 93(3): p. 401-8. 38. Wu, B.X., Y.H. Zeidan, and Y.A. Hannun, Downregulation of neutral ceramidase by gemcitabine: Implications for cell cycle regulation. Biochim Biophys Acta, 2009. 1791(8): p. 730-9. 39. Li, X.L., et al., The sequence-dependent cytotoxic effect of trastuzumab in combination with 5-Fluorouracil or cisplatin on gastric cancer cell lines. Cancer Invest, 2010. 28(10): p. 1038-47. 40. Shang, D., et al., Demethylating agent 5-aza-2'-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel. Urology, 2007. 69(5): p. 1007-12. 41. Angelucci, A., et al., Suberoylanilide hydroxamic acid partly reverses resistance to paclitaxel in human ovarian cancer cell lines. Gynecol Oncol, 2010. 119(3): p. 557-63. 42. Yin, H., et al., Combination of interferon-alpha and 5-fluorouracil induces apoptosis through mitochondrial pathway in hepatocellular carcinoma in vitro. Cancer Lett, 2011. 306(1): p. 34-42. 43. Jekunen, A.P., et al., Synergistic interaction between cisplatin and taxol in human ovarian carcinoma cells in vitro. Br J Cancer, 1994. 69(2): p. 299-306. 44. Li, N., et al., [Schedule-dependent effects of sorafenib in combination with paclitaxel on human hepatocellular carcinoma cell line BEL-7402]. Ai Zheng, 2009. 28(8): p. 838-43. 45. Tonkinson, J.L., et al., Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res, 1999. 59(15): p. 3671-6. 46. Zhu, Z.X., et al., [Effects of gemcitabine and pemetrexed on the proliferation of pancreatic cancer cell lines BXPC-3 and PANC-1 in vitro]. Nan Fang Yi Ke Da Xue Xue Bao, 2010. 30(1): p. 149-52. 47. Johnson, K.R., et al., 5-Fluorouracil interferes with paclitaxel cytotoxicity against human solid tumor cells. Clin Cancer Res, 1997. 3(10): p. 1739-45. 48. Toiyama, Y., et al., Administration sequence-dependent antitumor effects of paclitaxel and 5-fluorouracil in the human gastric cancer cell line MKN45. Cancer Chemother Pharmacol, 2006. 57(3): p. 368-75. 49. Cantor, J.R., et al., Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. Methods Enzymol, 2012. 502: p. 291-319. 50. Dinndorf, P.A., et al., FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist, 2007. 12(8): p. 991-8. 51. Capizzi, R.L., et al., L-asparaginase: clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med, 1971. 74(6): p. 893-901. 52. Clarkson, B., et al., Clinical results of treatment with E. coli L-asparaginase in adults with leukemia, lymphoma, and solid tumors. Cancer, 1970. 25(2): p. 279-305. 53. Epner, D.E., et al., Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer, 2002. 42(2): p. 158-66. 54. Durando, X., et al., Optimal methionine-free diet duration for nitrourea treatment: a Phase I clinical trial. Nutr Cancer, 2008. 60(1): p. 23-30. 55. Thivat, E., et al., Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer Res, 2009. 29(12): p. 5235-40. 56. Tan, Y., et al., Overexpression and large-scale production of recombinant L-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif, 1997. 9(2): p. 233-45. 57. Hu, J. and N.K. Cheung, Methionine depletion with recombinant methioninase: in vitro and in vivo efficacy against neuroblastoma and its synergism with chemotherapeutic drugs. Int J Cancer, 2009. 124(7): p. 1700-6. 58. Eagle, H., Amino acid metabolism in mammalian cell cultures. Science, 1959. 130(3373): p. 432-7. 59. Wheatley, D.N., et al., Single amino acid (arginine) restriction: growth and death of cultured HeLa and human diploid fibroblasts. Cell Physiol Biochem, 2000. 10(1-2): p. 37-55. 60. Tapiero, H., et al., I. Arginine. Biomed Pharmacother, 2002. 56(9): p. 439-45. 61. Reyes, A.A., I.E. Karl, and S. Klahr, Role of arginine in health and in renal disease. Am J Physiol, 1994. 267(3 Pt 2): p. F331-46. 62. Morris, S.M., Jr., Arginine: beyond protein. Am J Clin Nutr, 2006. 83(2): p. 508S-512S. 63. Rose, W.C., W.J. Haines, and D.T. Warner, The amino acid requirements of man. V. The role of lysine, arginine, and tryptophan. J Biol Chem, 1954. 206(1): p. 421-30. 64. Wu, G. and S.M. Morris, Jr., Arginine metabolism: nitric oxide and beyond. Biochem J, 1998. 336 ( Pt 1): p. 1-17. 65. Flynn, N.E., et al., The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother, 2002. 56(9): p. 427-38. 66. Barbul, A., Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr, 1986. 10(2): p. 227-38. 67. Husson, A., et al., Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem, 2003. 270(9): p. 1887-99. 68. Lind, D.S., Arginine and cancer. J Nutr, 2004. 134(10 Suppl): p. 2837S-2841S; discussion 2853S. 69. Delage, B., et al., Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer, 2010. 126(12): p. 2762-72. 70. Toda, N. and M. Nakanishi-Toda, Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res, 2007. 26(3): p. 205-38. 71. Goodwin, B.L., L.P. Solomonson, and D.C. Eichler, Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem, 2004. 279(18): p. 18353-60. 72. Haines, R.J., L.C. Pendleton, and D.C. Eichler, Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol, 2011. 2(1): p. 8-23. 73. Davis, P.K. and G. Wu, Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol B Biochem Mol Biol, 1998. 119(3): p. 527-37. 74. Flam, B.R., D.C. Eichler, and L.P. Solomonson, Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide, 2007. 17(3-4): p. 115-21. 75. Fulton, D., et al., Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J Biol Chem, 2004. 279(29): p. 30349-57. 76. Kuo, M.T., N. Savaraj, and L.G. Feun, Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget, 2010. 1(4): p. 246-51. 77. Xie, L. and S.S. Gross, Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J Biol Chem, 1997. 272(26): p. 16624-30. 78. Hattori, Y., E.B. Campbell, and S.S. Gross, Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem, 1994. 269(13): p. 9405-8. 79. Komada, Y., et al., Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int J Hematol, 1997. 65(2): p. 129-41. 80. Ratner, S., Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol, 1973. 39: p. 1-90. 81. Nasrallah, F., M. Feki, and N. Kaabachi, Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol, 2010. 42(3): p. 163-71. 82. Levillain, O., et al., Localization of arginine synthesis along rat nephron. Am J Physiol, 1990. 259(6 Pt 2): p. F916-23. 83. Barile, M.F. and B.G. Leventhal, Possible mechanism for Mycoplasma inhibition of lymphocyte transformation induced by phytohaemagglutinin. Nature, 1968. 219(5155): p. 750-2. 84. Kraemer, P.M., et al., Mycoplasma (PPLO) strains with lytic activity for murine lymphoma cells in vitro. Proc Soc Exp Biol Med, 1963. 112: p. 381-7. 85. Sugimura, K., et al., Identification and purification of arginine deiminase that originated from Mycoplasma arginini. Infect Immun, 1990. 58(8): p. 2510-5. 86. Miyazaki, K., et al., Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res, 1990. 50(15): p. 4522-7. 87. Takaku, H., et al., Anti-tumor activity of arginine deiminase from Mycoplasma argini and its growth-inhibitory mechanism. Jpn J Cancer Res, 1995. 86(9): p. 840-6. 88. Takaku, H., et al., In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer, 1992. 51(2): p. 244-9. 89. Lea, M.A., et al., Inhibitory effect of arginine restriction on hepatoma growth. Cancer Biochem Biophys, 1993. 13(3): p. 171-9. 90. Yeatman, T.J., G.L. Risley, and M.E. Brunson, Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg, 1991. 126(11): p. 1376-81; discussion 1381-2. 91. Kim, R.H., et al., Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res, 2009. 69(2): p. 700-8. 92. Ni, Y., U. Schwaneberg, and Z.H. Sun, Arginine deiminase, a potential anti-tumor drug. Cancer Lett, 2008. 261(1): p. 1-11. 93. Gong, H., et al., Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia, 2000. 14(5): p. 826-9. 94. Shen, L.J., K. Beloussow, and W.C. Shen, Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase. Cancer Lett, 2006. 231(1): p. 30-5. 95. Lam, T.L., et al., Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res, 2011. 24(2): p. 366-76. 96. Kim, J.E., et al., Arginine deiminase originating from Lactococcus lactis ssp. lactis American Type Culture Collection (ATCC) 7962 induces G1-phase cell-cycle arrest and apoptosis in SNU-1 stomach adenocarcinoma cells. Br J Nutr, 2009. 102(10): p. 1469-76. 97. Noh, E.J., et al., Arginine deiminase enhances dexamethasone-induced cytotoxicity in human T-lymphoblastic leukemia CCRF-CEM cells. Int J Cancer, 2004. 112(3): p. 502-8. 98. Kobayashi, E., et al., Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther, 2010. 9(3): p. 535-44. 99. Ensor, C.M., et al., Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res, 2002. 62(19): p. 5443-50. 100. Shen, L.J., et al., Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett, 2003. 191(2): p. 165-70. 101. Scott, L., et al., Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer, 2000. 83(6): p. 800-10. 102. Liang, Y.F., Effect of shRNA of argininosuccinate synthetase on a recombinant arginine deiminase-resistant cancer cell line, 2009, National Taiwan University. 103. Savaraj, N., et al., The relationship of arginine deprivation, argininosuccinate synthetase and cell death in melanoma. Drug Target Insights, 2007. 2: p. 119-28. 104. Izzo, F., et al., Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol, 2004. 22(10): p. 1815-22. 105. Cheng, P.N., et al., Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res, 2007. 67(1): p. 309-17. 106. Clinicaltrails.gov. ADI-PEG 20 Versus Placebo in Subjects With Advanced Hepatocellular Carcinoma Who Have Failed Prior Systemic Therapy. 2012; Available from: http://clinicaltrials.gov/ct2/show/NCT01287585?term=arginine+deiminase&rank=2. 107. Ascierto, P.A., et al., Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol, 2005. 23(30): p. 7660-8. 108. Glazer, E.S., et al., Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol, 2010. 28(13): p. 2220-6. 109. Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006. 58(3): p. 621-81. 110. Fraser, T.R., Lecture on the Antagonism between the Actions of Active Substances. Br Med J, 1872. 2(618): p. 485-7. 111. Loewe, S., Antagonisms and antagonists. Pharmacol Rev, 1957. 9(2): p. 237-42. 112. Berenbaum, M.C., What is synergy? Pharmacol Rev, 1989. 41(2): p. 93-141. 113. Greco, W.R., G. Bravo, and J.C. Parsons, The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47(2): p. 331-85. 114. Chou, T.C., Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol, 1976. 59(2): p. 253-76. 115. Chou, T.C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 1984. 22: p. 27-55. 116. Wu, F.L., et al., RNA interference of argininosuccinate synthetase restores sensitivity to recombinant arginine deiminase (rADI) in resistant cancer cells. J Biomed Sci, 2011. 18: p. 25. 117. Skehan, P., et al., New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst, 1990. 82(13): p. 1107-12. 118. Vichai, V. and K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc, 2006. 1(3): p. 1112-6. 119. Caso, G., et al., Tumour cell growth in culture: dependence on arginine. Clin Sci (Lond), 2004. 107(4): p. 371-9. 120. Bowles, T.L., et al., Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer, 2008. 123(8): p. 1950-5. 121. Kim, R.H., R.J. Bold, and H.J. Kung, ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy, 2009. 5(4): p. 567-8. 122. Yoon, C.Y., et al., Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer, 2007. 120(4): p. 897-905. 123. Park, H., et al., Arginine deiminase enhances MCF-7 cell radiosensitivity by inducing changes in the expression of cell cycle-related proteins. Mol Cells, 2008. 25(2): p. 305-11. 124. Yang, H., et al., Combined lysosomal protein transmembrane 4 beta-35 and argininosuccinate synthetase expression predicts clinical outcome in hepatocellular carcinoma patients. Surg Today, 2011. 41(6): p. 810-7. 125. Breillout, F., E. Antoine, and M.F. Poupon, Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst, 1990. 82(20): p. 1628-32. 126. Pietras, R.J., et al., Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene, 1994. 9(7): p. 1829-38. 127. Chen, H.Y., et al., Peplomycin induces G1-phase specific apoptosis in liver carcinoma cell line Bel-7402 involving G2-phase arrest. Acta Pharmacol Sin, 2004. 25(12): p. 1698-704. 128. Kumazawa, H., et al., [Mechanism of cisplatin and peplomycin therapy on head and neck carcinoma]. Hum Cell, 1996. 9(1): p. 69-74. 129. Knapp, D.C., et al., Resistance to chemotherapeutic drugs overcome by c-Myc inhibition in a Lewis lung carcinoma murine model. Anticancer Drugs, 2003. 14(1): p. 39-47. 130. Al-Katib, A., et al., I-kappa-kinase-2 (IKK-2) inhibition potentiates vincristine cytotoxicity in non-Hodgkin's lymphoma. Mol Cancer, 2010. 9: p. 228. 131. Huang, J.J., et al., Schedule-dependent inhibition of T-cell lymphoma cells by cotreatment with the mTOR inhibitor everolimus and anticancer drugs. Invest New Drugs, 2012. 30(1): p. 223-35. 132. Goto, H., et al., Methylated chrysin reduced cell proliferation, but antagonized cytotoxicity of other anticancer drugs in acute lymphoblastic leukemia. Anticancer Drugs, 2012. 23(4): p. 417-25. 133. Zhong, Y.J., et al., Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms. Acta Pharmacol Sin, 2011. 32(12): p. 1529-36. 134. Hanna, R.K., et al., Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol, 2012. 125(2): p. 458-69. 135. Foroodi, F., W.C. Duivenvoorden, and G. Singh, Interactions of doxycycline with chemotherapeutic agents in human breast adenocarcinoma MDA-MB-231 cells. Anticancer Drugs, 2009. 20(2): p. 115-22. 136. Tanaka, R., et al., In vitro sequence-dependent interaction between nedaplatin and paclitaxel in human cancer cell lines. Cancer Chemother Pharmacol, 2005. 56(3): p. 279-85. 137. Johnson, K.R., K.K. Young, and W. Fan, Antagonistic interplay between antimitotic and G1-S arresting agents observed in experimental combination therapy. Clin Cancer Res, 1999. 5(9): p. 2559-65. 138. Ali, S., et al., Sequence dependent potentiation of gemcitabine by flavopiridol in human breast cancer cells. Breast Cancer Res Treat, 2005. 90(1): p. 25-31. 139. Ocana, A., et al., How valid are claims for synergy in published clinical studies? Ann Oncol, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65021 | - |
| dc.description.abstract | 化學藥物治療目前對於癌症治療是很重要的方式。目前臨床上使用的化療藥物可分為細胞週期專一性以及非專一性,治療方式常採用合併藥物治療。而併用針對不同細胞週期的化療藥物,可能會改變原本藥物的效果,如協同 (synergism)、加成 (additive effect) 或拮抗作用 (antagonism)。此外,使用不同的給藥順序也會可能影響到化療藥物併用的結果。
精胺酸去亞胺酶 (arginine deiminase; ADI) 已經在臨床試驗中被證實用於治療肝癌、黑色素癌;這類的癌細胞被稱為精胺酸缺乏型 (arginine auxotrophy),因為精胺酸 (arginine) 的缺乏攸關其存亡。精胺酸在生化合成途徑中扮演重要角色,包括蛋白質、一氧化氮、多元胺、肌酸等生成。而精胺酸缺乏型癌細胞,因為本身缺乏精胺酸琥珀酸合成酶 (argininosuccinate synthetase; AS) 的表現,而無法將瓜胺酸 (citrulline) 轉換成精胺酸,以致於無法在缺乏精胺酸的環境中生存,但是正常成人細胞卻能在這樣的環境中生存,因此 ADI 能對此類細胞產生選擇性毒殺作用。然而某些癌細胞本身會表現 AS,因此對於 ADI 便會產生抗藥性。本研究中所使用的人類乳癌細胞株 MCF-7 即為此類細胞。 雖然 ADI 已經進入第三期臨床試驗,但是在與其他化療藥物併用的效果仍不清楚。而且 ADI 為蛋白質藥物,本研究希望藉由藥物併用的方式,來減少所使用的劑量,這對於蛋白質藥物在臨床使用上增加更多優勢。因此本研究合併使用基因重組精胺酸去亞胺酶 (recombinant arginine deiminase; rADI) 與五種臨床上常用的化療藥物,cisplatin、vincristine、paclitaxel、fluorouracil、gemcitabine,以三種不同給藥順序評估其療效,分別為同時給予化療藥物和 rADI (4-day C/T / 4-day rADI)、先給化療藥物再給 rADI (4-day C/T / 3-day rADI)、以及先給 rADI 再給化療藥物 (3-day C/T / 4-day rADI)。四天後以 SRB assay 觀察 rADI 與化療藥物併用的效果。 除了使用 MCF-7 細胞株之外,也同時使用穩定表現 AS 之短髮夾核醣核酸干擾 (ASshRNA) 的MCF-7 細胞株 (MCF-7-ASKD),作為精胺酸缺乏型的細胞模型,rADI 對於此類細胞有明顯抑制生長效果。藥物併用的效果以 SRB 檢驗分析細胞存活率;並且使用 Chou-Talalay 所提出併用係數 (combination index; CI) 的公式來評估兩種藥物之間的反應關係,如果 CI < 1、= 1 或 > 1,分別代表兩種藥物併用的效果是協同、加成或拮抗。 對於 MCF-7 給予 1 mU/mL rADI 仍無法達到抑制 50% 的細胞生長,而 MCF-7-ASKD 的 IC50 為 0.25 mU/mL。為了使得 MCF-7-ASKD 細胞在還未加化療藥物時仍有 50% 的存活率,在後續實驗中,選用 0.2 mU/mL rADI 併用化療藥物。而分別在兩株細胞給予不同的化療藥物,MCF-7-ASKD 的 IC50 在 cisplatin、vincristine、paclitaxel、fluorouracil及gemcitabine,相較這些藥物在 MCF-7 的 IC50 分別減少了 35%、32%、30%、15%、43%,表示 AS 蛋白的表現能增加癌細胞對於化療藥物的抗藥性。藥物併用實驗中,對於 MCF-7 細胞株,先給予 rADI 再給予 gemcitabine 的實驗中增強效果最明顯 (> 20%),而同時給予 rADI 以及 vincristine 或 paclitaxel,則在部分濃度有增強效果 (> 15%)。對於 MCF-7-ASKD 細胞株,先用 cisplatin 再用 rADI,在部分濃度才有協同作用,若是給藥順序相反或同時給藥,在部分濃度則是產生拮抗作用。對於 vincristine而言,先使用 rADI 會有協同作用,若給藥順序相反或同時給藥,在部分濃度則是產生拮抗作用。然而,對於 paclitaxel 而言,無論何種給藥順序都是拮抗作用。對於 fluorouracil 而言,併用 rADI 並沒有明顯協同作用,而且同時給藥則有拮抗作用。對於 gemcitabine 而言,先給予 rADI 會有拮抗作用,而同時給予在部分濃度呈現拮抗作用,若之後給予 rADI 則沒有明顯拮抗作用。 總結來說,本研究中對照 MCF-7 以及 MCF-7 ASKD 的結果,發現 AS 會影響癌細胞對於化療藥物的感受性;而在使用 rADI 來治療癌症時,對於 rADI 具敏感性或不具敏感性的細胞而言,不同的併用藥物,有不同的效果。本研究提供 rADI 與其他化療藥物併用或者併用順序之參考。 | zh_TW |
| dc.description.abstract | Chemotherapy has become an important treatment in cancer therapy. In currently clinincal use, chemotherapeutic agents can be divided into two categories, cell-cycle-specific and cell-cycle-nonspecific; combination therapy is usually used. To combine different chemotherapeutic agents which have different effects on cell cycle may change the drug’s original effect, such as synergism, additive effect, and antagonism. Nevertheless, by using different administration orders of chemotherapeutic agents may influence the therapeutic results and, sometimes even opposite.
Arginine deiminase (ADI) for the treatment of hepatocellular carcinoma and malignant melanoma has been confirmed in clinical trials. This type of cancer is known as arginine auxotrophy because arginine is critical for their survival. Arginine plays an important role in biosynthesis, such as protein, nitric oxide, polyamines, and creatine etc. Arginine auxotrophy cancers can’t express argininosuccinate synthetase (AS), so they do not survive in the arginine-free medium. Normal cells in adults with AS expression can grow in such environment. Therefore, ADI produce selective cytotoxicity to arginine auxotrophy cells. However some cancer cells would express AS, which may result in rADI-resistance. The cell model we chose was the human breast cancer cell line MCF-7 known resistant to rADI. ADI has been in Phase III clinical trials, but its effect in combine with other chemotherapeutic agents is still unclear. It would gain more advantages of the reduction of rADI dose and clinical efficacy by the combination therapy. Therefore, this study combined recombinant arginine deiminase (rADI) with five clinically common used chemotherapeutic agents (cisplatin, vincristine, paclitaxel, fluorouracil, gemcitabine), and used three different schemes as following to evaluate their effects: (a) C/T and rADI were administered simultaneously (4-day C/T /4-day rADI), (b) C/T was administered one day earlier followed by rADI (4-day C/T / 3-day rADI), (c) rADI was administered one day ealiear followed by C/T. After a total of 4-day treatment, cell viability was evaluated by SRB assay. MCF-7-ASKD cells, with low AS by expressing ASshRNA are sensitive to rADI treatment, using as an arginine auxotrophy cell model. The effects of the drug combinations using the method of combination index (CI) described by Chou and Talalay. When the CI was < 1, = 1, > 1, the combination was considered as synergism, additive, antagonism respectively. The IC50 of rADI at MCF-7 was greater than the tested concentration 1 mU/mL, but that of rADI at MCF-7-ASKD is 0.25 mU/mL. For keep 50% survival rate of MCF-7-ASKD with rADI alone, we used 0.2 mU/mL of rADI in the following combination experiments.The IC50 of rADI at MCF-7-ASKD was reduced in cisplatin, vincristine, paclitaxel, fluorouracil, gemcitabine about 35%, 32%, 30%, 15%, and 43%, comparing to that at MCF-7; it means that the AS expression could increase the resistance to C/T. Combination experiments showed that for MCF-7, the significant enhancement was shown in the administration order of rADI followed by gemcitabine (> 20%), and in simultaneously administration of certain concentrations of vincristine and paclitaxel (> 15%). For MCF-7-ASKD, synergism was shown in certain concentrations by the order of cisplatin followed by rADI, but antagonism was shown in certatin concentrations by other administration orders; for vincristine, synergism was shown in rADI-pretreatment, but antagonism was shown in other orders; for fluorouracil, antagonism was shown in co-treatment; for gemcitabine, antagonism was shown in rADI-pretreatment and in co-treatment of certain concentrations but not in rADI-post-treatment. In conclusion, we compared the results of MCF-7 and MCF-7-ASKD and found that AS may influence the sensitivity of chemotherapeutic agents at cancer cells. For rADI-sensitive or non-sensitive cancer cells, different drug combinations may have different effects with rADI. This study provides some evidence for drug combination and administration order when rADI combines with other chemotherapeutic agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:15:49Z (GMT). No. of bitstreams: 1 ntu-101-R98423018-1.pdf: 1155113 bytes, checksum: 89ac34a888cd1a1c081ff1d3a3806378 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄 II
圖目錄 IV 表目錄 V 中文摘要 VI Abstract IX 英文縮寫對照表 XII 第一章 緒論 1 1.1. 癌症治療 1 1.2. 化學藥物治療 (chemotherapy) 2 1.2.1. 機轉 (mechanism) 2 1.2.2. 臨床治療現況 4 1.3. 基因重組精胺酸去亞胺酶 (rADI) 6 1.3.1. Arginine 與其生理活性 7 1.3.2. 精胺酸琥珀酸合成酶 (AS) 的生理角色 8 1.3.3. 精胺酸去亞胺酶 (ADI) 的發現 9 1.3.4. rADI 的臨床應用限制 10 1.4. 藥物併用 (drug combination) 11 1.4.1. 中效公式 (median-effect equation) 11 1.4.2. 併用係數 (combination index) 12 1.4.3. 藥物併用實驗設計 12 第二章 實驗目的 14 第三章 實驗材料 15 3.1. 細胞培養 15 3.2. 化學治療藥物 15 3.3. 細胞存活分析 16 3.4. rADI 活性試驗 16 第四章 實驗方法 17 4.1. 細胞培養 (cell culture) 17 4.2. 細胞存活率試驗 (cell viability assay)-SRB assay 17 4.3. rADI 活性試驗 (activity assay) 18 4.4. rADI 用於 MCF-7 及 MCF-7-ASKD 之效果檢測 18 4.5. rADI 併用化學治療藥物 (chemotherapeutic drugs) 之效果檢測 18 4.6. 藥效學模型分析 (Pharmacodynamic model analysis) 19 4.7. Combination Index (CI) 計算公式 20 4.8. 統計分析 21 第五章 實驗結果 22 5.1. AS 對於化療藥物效果的影響 22 5.1.1. rADI 對於 MCF-7 及 MCF-7-ASKD 細胞的效果 22 5.1.2. Cisplatin對於 MCF-7 與 MCF-7-ASKD 細胞的 IC50 22 5.1.3. Vincristine對於 MCF-7 與 MCF-7-ASKD 細胞的 IC50 23 5.1.4. Paclitaxel對於 MCF-7 與 MCF-7-ASKD 細胞的 IC50 23 5.1.5. Fluorouracil對於 MCF-7 與 MCF-7-ASKD 細胞的 IC50 23 5.1.6. Gemcitabine 對於 MCF-7 與 MCF-7-ASKD 細胞的 IC50 24 5.2. 化學治療藥物併用 rADI 對於 MCF-7 及 MCF-7-ASKD細胞生存率之影響 24 5.2.1. Cisplatin 與 rADI 的併用效果 24 5.2.2. Vincristine 與 rADI 的併用效果 25 5.2.3. Paclitaxel 與 rADI 的併用效果 26 5.2.4. Fluorouracil 與 rADI 的併用效果 26 5.2.5. Gemcitabine與 rADI 的併用效果 27 第六章 實驗討論 28 6.1. rADI 用於癌症治療 28 6.2. AS 對於癌細胞的影響 29 6.3. rADI 併用化療藥物 30 6.4. 實驗限制 34 第七章 結論 35 第八章 附錄 36 第九章 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 併用係數 | zh_TW |
| dc.subject | 基因重組精胺酸去亞胺酶 | zh_TW |
| dc.subject | 給藥順序 | zh_TW |
| dc.subject | 化療藥物 | zh_TW |
| dc.subject | 藥物併用 | zh_TW |
| dc.subject | chemotherapeutic agents | en |
| dc.subject | recombinant arginine deiminase | en |
| dc.subject | drug combination | en |
| dc.subject | dosing schedule | en |
| dc.subject | combination index | en |
| dc.title | 基因重組精胺酸去亞胺酶與化學治療藥物的協同作用 | zh_TW |
| dc.title | Recombinant arginine deiminase (rADI) and its synergism
with chemotherapeutic drugs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許麗卿(Lih-Ching Hsu),孔繁璐(Fan-Lu Kung) | |
| dc.subject.keyword | 化療藥物,併用係數,給藥順序,藥物併用,基因重組精胺酸去亞胺酶, | zh_TW |
| dc.subject.keyword | chemotherapeutic agents,combination index,dosing schedule,drug combination,recombinant arginine deiminase, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
