Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65019
標題: 含亞銅金屬超分子高分子電解質之光電性質及其電致色變應用之研究
On the Electro-optical Properties of Metallo-supramolecular Polyelectrolytes (MEPEs) Containing Copper(I) and Their Electrochromic Applications
作者: Wei-Han Chen
陳暐翰
指導教授: 何國川(Ko-Chuan Ho)
關鍵字: 金屬超分子材料,MEPE-Cu(I),金屬至配位基的電子轉移,循環伏安法預處理,超快速響應時間,
metallo-supramolecular materials,MEPE-Cu(I),metal-to-ligand charge transfer (MLCT),cyclic-voltammetry (CV) pretreatment,ultra-fast response time,
出版年 : 2012
學位: 碩士
摘要: In this thesis, a new field in electrochromic materials combining inorganic metal ions with organic ligands, which is called metallo-supramolecular materials, is introduced and discussed. The metallo-supramolecular polyelectrolytes (MEPEs) containing copper(I) metal ion, MEPE-Cu(I), is first synthesized and applied in electrochromism. To investigate different roles in electrochromic device, polyaniline-carbon nanotube (PANI-CNT) and poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) (PProDOT-Et2) are chosen with MEPE-Cu(I) for device fabrications.
We choose 4’-4’’’’-(1,4-phenylene) bis (2,2’:6’,2’’-terpyridine) as the ligand and copper(I) acetate as metal ion center to synthesize the MEPE-Cu(I). Due to metal-to-ligand charge transfer (MLCT) and redox reaction of Cu(I)/Cu(II), the color could be change by applying potential to influence the interaction between Cu(I) and terpyridine ligands and becomes as a new cathodic coloration material. All the MEPE-Cu(I) thin films are prepared by drop-coating with a concentration of 1 mg/mL. By varying the volume per drop, four different thicknesses of MEPE-Cu(I) films (MEPE-Cu(I) 100 μL to 400 μL) are prepared and compared. And the limitation of thickness for MEPE-Cu(I) have been found. The cyclic-voltammetry (CV) pretreatment between 0.0 V and 1.5 V (vs. Ag/Ag+) for 100 cycles is applied for preparation of MEPE-Cu(I) thin film, which enhance the optical performance and reduce resistance of thin film in electrochemical reaction to reach stability of the film. It is also proved by SEM image for surface morphology and EQCM for mass change. MEPE-Cu(I) has transmittance change of above 20%, less 1s of response time and the coloration efficiency of around 260 cm2/C. With ultra-fast response time and higher coloration efficiency, MEPE-Cu(I) could be chosen to apply for electrochromic applications.
Two electrochromic devices based on MEPE-Cu(I) with TBAP/ACN as electrolyte have been fabricated. In MEPE-Cu(I)/PANI-CNT ECD system, PANI-CNT as an anodic coloration material is selected as an ionic storage layer with higher charge capacity, which provide better ability of electron transfer for MEPE-Cu(I) and enhance the electrochromic properties. The transmittance change at 580 nm is similar to MEPE-Cu(I) thin film. However, the response time could be shortened to less than 0.5 s. In the long-term stability experiment, the device could be operated for 1500 cycles and maintains above 99% of original performance.
Besides, in MEPE-Cu(I)/PProDOT-Et2 ECD, PProDOT-Et2 is selected as the main electrochromic layer to fabricated with MEPE-Cu(I) because of relatively smaller transmittance change. MEPE-Cu(I) could also act as an ionic storage layer and assist the electron transfer of PProDOT-Et2, which provides higher transmittance above 35%, fast response time of less than 1 s. In spite of larger operating potential window of 3.5 V, the device could be operated for 1000 cycles with only 6.3% of decay. Both these two devices prove that MEPE-Cu(I) could be a stable electrochromic material and worth applying for other applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65019
全文授權: 有償授權
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.24 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved