Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65007
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorChiung-Ting Wuen
dc.contributor.author巫炯霆zh_TW
dc.date.accessioned2021-06-16T23:14:47Z-
dc.date.available2012-08-03
dc.date.copyright2012-08-03
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178-1181 (1991)
[2] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998).
[3] G. Hausler and M. W. Lindner, “Coherence radar and spectral radar–New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[4] J. F. Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[5] M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
[6] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[7] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[8] B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704-1706 (1997).
[9] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto,“Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[10] S. H. Yun, G. J. Tearney, J. F. Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain imaging,” Opt. Express 12, 2977-2998 (2004).
[11] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
[12] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[13] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, 'In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,'
Opt. Express 15, 6121-6139 (2007).
[14] R. Huber, M. Wojtkowski, and J.G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and application for optical coherence tomography,” Optics Express 14,3225-3237 (2006).
[15] A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski,“Complex spectral interferometry OCT,” Proc. SPIE. 3564, 173-178 (1999).
[16] P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79-84 (2004).
[17] Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai,“One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004).
[18] R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase shifting algorithm to achieve highspeed long depth range probing by frequency domain optical coherence tomography,” Opt. Lett. 28, 2201-2003 (2003).
[19] J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
[20] E. Gotzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13,
583-594 (2005).
[21] H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040-3045 (2009).
[22] K. Lee, P. Meemon, W. Dallas, K. Hsu, and J. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058-1060 (2010).
[23] S. Zotter, M. Pircher, E. Gotzinger, T. Torzicky, M. Bonesi, and C. Hitzenberger,“Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett. 35, 3913-3915 (2010).
[24] M. Choma, C. Yang, and J. Izatt, “Instantaneous quadrature low-coherence interferometry with 3x3 fiber-optic couplers,” Opt. Lett. 28, 2162-2164 (2003).
[25] M. Sarunic, M. Choma, C. Yang, and J. Izatt, 'Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers,' Opt.
Express 13, 957-967 (2005).
[26] M. Sarunic, B. Applegate, and J. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31,
2426-2428 (2006).
[27] Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3×3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47, 2004-2010 (2008).
[28] S. Yun, G. Tearney, J. de Boer, and B. Bouma,“Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828 (2004).
[29] J. Zhang, J. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratioin Fourier-domain optical coherence tomography using an electro-optic phasemodulator,” Opt. Lett. 30, 147-149 (2005).
[30] A. M. Davis, M. A. Choma, and J. A. Izatt,“Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[31] A. Dhalla and J. Izatt, “Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line,” Biomed. Opt. Express 2, 1218-1232 (2011).
[32] A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14, 1487-1496 (2006).
[33] Y. Tao, M. Zhao, and J. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918-2920 (2007).
[34] A. Vakhtin, K. Peterson, and D. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31, 1271-1273 (2006).
[35] A. Vakhtin, K. Peterson, and D. Kane, “Demonstration of complex-conjugate-resolved harmonic Fourier-domain optical coherence tomography imaging of biological samples,” Appl. Opt. 46, 3870-3877 (2007).
[36] B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler,“Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7-24 (2009).
[37] S. Witte, M. Baclayon, E. Peterman, R. Toonen, H. Mansvelder, and M. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17, 11335-11349 (2009).
[38] B. Hermann, B. Hofer, C. Meier, and W. Drexler, “Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non- scattering phantoms,” Opt. Express 17, 24162-24174 (2009).
[39] B. Hofer, B. Povazay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18, 4898-4919 (2010).
[40] Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861-1865 (2006).
[41] R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[42] S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420,
(2008).
[43] S. Vergnole, G. Lamouche, and M. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732-734 (2008).
[44] K. Wang, Z. Ding, Y. Zeng, J. Meng, and M. Chen, “Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact,” Opt. Express 17, 16820-16833 (2009).
[45] F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt.
Express 18, 1358-1372 (2010).
[46] B. Baumann, M. Pircher, E. Götzinger, and C. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375-13387 (2007).
[47] L. An and R. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423-3425 (2007).
[48] R. Leitgeb, R. Michaely, T. Lasser, and S. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453-3455 (2007).
[49] 36. C. T. Wu, T. T. Chi, C. K. Lee, Y. W. Kiang, C. C. Yang, and C. P. Chiang,“A method for suppressing the mirror image in Fourier-domain optical coherence tomography,” Opt. Lett. 36, 2889-2891 (2011).
[50] R. Huber, D. C. Adler, and J. G. Fujimoto, 'Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,' Opt. Lett. 31, 2975-2977 (2006).
[51] D. Adler, S. Huang, R. Huber, and J. Fujimoto, 'Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,' Opt. Express 16, 4376-4393 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65007-
dc.description.abstract我們展示了在傅氏域光學同調斷層掃瞄的一個省時之鏡像消除
方法,包括了理論說明及實驗結果。這新方法利用基於實像與鏡像之
系統相位差相反的性質,來區別兩者。基於合理的假設,我們可以求
得兩個聯立方程式之解,由此可得到實像訊號。於本論中,我們說明
了這個方法的理論基礎,並且證明使用平均和疊代步驟可以進一步改
善實像品質。再者,我們估算在不同影像處理條件下之鏡像消除比
值,包括不同的疊代次數以及兩條A-模掃瞄間不同系統相位差等條
件變化。同時,我們比較我們的方法與廣泛使用的BM 掃瞄法結果之
不同,在我們的方法中使用兩次疊代之鏡像消除品質可勝過BM 掃瞄
法,而使用我們的方法所需電腦運算時間明顯地較BM 掃瞄法短。
基於傅氏域鎖模雷射之製作,我們還建置了一套高速掃頻光學同
調斷層掃瞄系統,該雷射之中心波長在1290 奈米附近,在空氣中光
學同調斷層掃瞄系統之軸向解析度約為10 微米。傅氏域鎖模雷射系
統內包含作為增益介質以及輸出功率放大器之半導體光學放大器,其
掃頻功能係由在適當的頻率下控制法布立-培若可調式濾波器來達
成。我們使用雙重延遲技術使掃頻速率變為四倍,達二十四萬赫茲,
傅氏域鎖模雷射的輸出功率約為40 毫瓦。掃瞄一張具有500000 A-
模掃瞄之三維圖像所需時間只要2.1 秒。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T23:14:47Z (GMT). No. of bitstreams: 1
ntu-101-R99941042-1.pdf: 3386666 bytes, checksum: 46c3875edc150c0176badc0947163de2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝.………………………….…………………………i
中文摘要........................................................................ ii
Abstracts....................................................................... iii
Contents...........................................................................v
Chapter 1
Introduction - Optical Coherence Tomography......... 1
1.1 Introduction................................................................................... 1
1.2 Theory of Optical Coherence Tomography................................ 4
1.3 Fourier-domain Optical Coherence Tomography.................... 10
1.3.1 Spectral-domain Optical Coherence Tomography............ 10
1.3.2 Swept-source Optical Coherence Tomography................. 11
1.4 Mirror Image............................................................................... 14
1.5 Research Motivations.................................................................. 19
Chapter 2
A Computation Time-saving Mirror Image
Suppression Method in Fourier-domain Optical
Coherence Tomography............................................. 22
2.1 Theory........................................................................................... 22
2.2 Mirror Image Suppression Demonstration............................... 28
2.3 Mirror Image Suppression Ratio............................................... 35
Chapter 3
High-speed Swept-source Optical Coherence
Tomography Based on a Fourier-domain
Mode-locking Laser......................................................48
3.1 Introduction................................................................................. 48
3.2 Setup of FDML Laser and SS-OCT………………………....... 50
3.3 High-speed SS-OCT Scanning Results………………………...53
Chapter 4
Conclusions and Future Work .................................. 58
4.1 Summary...................................................................................... 58
4.2 Future Work................................................................................ 60
References ....................................................................61
dc.language.isoen
dc.subject傅氏域光學同調斷層掃瞄zh_TW
dc.subject鏡像zh_TW
dc.subject相位差zh_TW
dc.subject傅氏域鎖模雷射zh_TW
dc.subject法布立-培若可調式濾波器zh_TW
dc.subjectmirror imageen
dc.subjectphase shiften
dc.subjectFourier-domain mode-locking laseren
dc.subjectfiber Fabry-Perot tunable filteren
dc.subjectFourier-domain optical coherence tomographyen
dc.title傅氏域光學同調斷層掃瞄技術研究zh_TW
dc.titleTechnique Development of Fourier-domain Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡孟燦,呂志偉,江衍偉
dc.subject.keyword傅氏域光學同調斷層掃瞄,鏡像,相位差,傅氏域鎖模雷射,法布立-培若可調式濾波器,zh_TW
dc.subject.keywordFourier-domain optical coherence tomography,mirror image,phase shift,Fourier-domain mode-locking laser,fiber Fabry-Perot tunable filter,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved