請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65000
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊彬(Chun-Pin Lin),章浩宏(Hao-Hueng Chang) | |
dc.contributor.author | Sheng-Wei Chang | en |
dc.contributor.author | 張勝惟 | zh_TW |
dc.date.accessioned | 2021-06-16T23:14:21Z | - |
dc.date.available | 2017-09-17 | |
dc.date.copyright | 2012-09-17 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | 1. Schwartz O, Frederiksen K, Klausen B: Allotransplantation of human teeth. A restrospective study of 73 transplantations over a period of 28 years. International journal of oral and maxillofacial surgery 1987, 16(3):285-301.
2. Kvint S, etal : Autotransplantation of teeth in 215 patients. A follow-up study. The Angle orthodontist 2010, 80(3):446-451. 3. d' Hauwers R: [Implantation of plastic teeth (allo- or xenoplastic implantation) and homoimplantation (homostatic-orthotopic autoimplantation)]. Revue belge de medecine dentaire Belgisch tijdschrift voor tandheelkunde 1972, 27(1):71-78. 4. Branemark PI, etal : Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969, 3(2):81-100. 5. Arvidson K, etal : Histological characteristics of peri-implant mucosa around Brånemark and single-crystal sapphire implants. Clinical Oral Implants Research 1996, 7(1):1-10. 6. Branemark PI: Osseointegration and its experimental background. The Journal of prosthetic dentistry 1983, 50(3):399-410. 7. Leonhardt Å,etal: Long-term follow-up of osseointegrated titanium implants using clinical, radiographic and microbiological parameters. Clinical Oral Implants Research 2002, 13(2):127-132. 8. Fischer K, Stenberg T: Prospective 10-Year Cohort Study Based on a Randomized Controlled Trial (RCT) on Implant-Supported Full-Arch Maxillary Prostheses. Part 1: Sandblasted and Acid-Etched Implants and Mucosal Tissue. Clinical Implant Dentistry and Related Research 2011:no-no. 9. Davies J: Understanding peri-implant endosseous healing. Journal of Dental Education 2003, 67(8):932-949. 10. Kuchler U, etal : Bone healing around titanium implants in two rat colitis models. Clin Oral Implants Res 2012. 11. Albrektsson TA, Johansson CJ: Osteoinduction, osteoconduction and osseointegration. European Spine Journal 2001, 10(0):S96-S101. 12. Wikesjo UME, etal : rhBMP-2 significantly enhances guided bone regeneration. Clinical Oral Implants Research, 15(2):194-204. 13. Avila G, etal : Implant Surface Treatment Using Biomimetic Agents. Implant Dentistry 2009, 18(1):17-26 10.1097/ID.1090b1013e318192cb318197d. 14. Movchan BA, Demchishin AV: STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Journal Name: Fiz Metal Metalloved 28: 653-60 (Oct 1969); Other Information: Orig Receipt Date: 31-DEC-70 1969:Medium: X. 15. Avila G, etal : Implant surface treatment using biomimetic agents. Implant Dent 2009, 18(1):17-26. 16. Lincks J, etal : Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998, 19(23):2219-2232. 17. Shalabi MM, etal : Implant Surface Roughness and Bone Healing: a Systematic Review. Journal of Dental Research 2006, 85(6):496-500. 18. Ponsonnet L, etal : Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C 2003, 23(4):551-560. 19. Gotfredsen K, Hjorting-Hansen E, Budtz-Jorgensen E: Clinical and radiographic evaluation of submerged and nonsubmerged implants in monkeys. The International journal of prosthodontics 1990, 3(5):463-469. 20. Wennerberg A, Albrektsson T: Suggested guidelines for the topographic evaluation of implant surfaces. The International journal of oral & maxillofacial implants 2000, 15(3):331-344. 21. Hermann JS, etal : Biologic Width around one- and two-piece titanium implants. Clinical Oral Implants Research 2001, 12(6):559-571. 22. Dursun E, etal : Are marginal bone levels and implant stability/mobility affected by single-stage platform switched dental implants? A comparative clinical study. Clin Oral Implants Res 2011. 23. Lazzara RJ, Porter SS: Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. The International journal of periodontics & restorative dentistry 2006, 26(1):9-17. 24. Steigenga J, etal : Effects of Implant Thread Geometry on Percentage of Osseointegration and Resistance to Reverse Torque in the Tibia of Rabbits. Journal of Periodontology 2004, 75(9):1233-1241. 25. Lee D-W, etal : Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clinical Oral Implants Research 2007, 18(4):465-470. 26. Cao H, etal : [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2007, 24(2):372-375. 27. Kim MH, etal : Effect of biomimetic deposition on anodized titanium surfaces. J Dent Res 2011, 90(6):711-716. 28. Sanchez-Garces MA, Gay-Escoda C: Periimplantitis. Medicina oral, patologia oral y cirugia bucal 2004, 9 Suppl:69-74; 63-69. 29. Kang S-H, Cho S-A: Comparison of Removal Torques for Laser-Treated Titanium Implants With Anodized Implants. Journal of Craniofacial Surgery 2011, 22(4):1491-1495 1410.1097/SCS.1490b1013e31821d31824d31898. 30. Jimbo R, etal : Enhanced Initial Cell Responses to Chemically Modified Anodized Titanium. Clinical Implant Dentistry and Related Research 2008, 10(1):55-61. 31. Park KH, etal: Osseointegration of anodized titanium implants under different current voltages: a rabbit study. Journal of Oral Rehabilitation 2007, 34(7):517-527. 32. Park JM, etal : Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. The International journal of oral & maxillofacial implants 2006, 21(6):859-866. 33. Blackwood DJ, Seah KH: Influence of anodization on the adhesion of calcium phosphate coatings on titanium substrates. J Biomed Mater Res A 2010, 93(4):1551-1556. 34. Frojd V, etal : Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC oral health 2011, 11:8. 35. Weiner S, etal : The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent 2008, 17(2):217-228. 36. Heinrich A, etal : Laser-modified titanium implants for improved cell adhesion. Lasers in medical science 2008, 23(1):55-58. 37. Li D, etal : Effects of a Modified Sandblasting Surface Treatment on Topographic and Chemical Properties of Titanium Surface. Implant Dentistry 2001, 10(1):59-64. 38. Jiang XP, etal : Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Materials Science and Engineering: A 2006, 429(1–2):30-35. 39. Ban S, etal : Surface modification of titanium by etching in concentrated sulfuric acid. Dental materials : official publication of the Academy of Dental Materials 2006, 22(12):1115-1120. 40. Park JY, Davies JE: Red blood cell and platelet interactions with titanium implant surfaces. Clinical Oral Implants Research 2000, 11(6):530-539. 41. Orsini G, etal : Surface analysis of machined versus sandblasted and acid-etched titanium implants. The International journal of oral & maxillofacial implants 2000, 15(6):779-784. 42. Ágata de Sena L, etal : Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. Journal of Biomedical Materials Research 2002, 60(1):1-7. 43. Heimann RB: The Technology Transfer Process: Solutions to Industrial Problems. In Plasma-Spray Coating. Wiley-VCH Verlag GmbH; 2007:181-242. 44. Chosa N, etal : Characterization of Apatite Formed on Alkaline-heat-treated Ti. Journal of Dental Research 2004, 83(6):465-469. 45. Rausch-fan X Fau - Qu Z, etal : Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. (0109-5641 (Print)). 46. Kim Cs Fau - Sohn SH, etal : Effect of various implant coatings on biological responses in MG63 using cDNA microarray. (0305-182X (Print)). 47. Zhang Ew Fau - Wang YB, etal: In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. (1748-605X (Electronic)). 48. Sepahvandi A Fau - Moztarzadeh F, etal : Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art. (1873-4367 (Electronic)). 49. Navarro M Fau - Michiardi A, etal : Biomaterials in orthopaedics. (1742-5689 (Print)). 50. Yao C, Slamovich EB, Webster TJ: Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Journal of Biomedical Materials Research Part A 2008, 85A(1):157-166. 51. Palmer R: Ti-unite dental implant surface may be superior to machined surface in replacement of failed implants. (1532-3390 (Electronic)). 52. Jungner M Fau - Lundqvist P, Lundqvist P Fau - Lundgren S, Lundgren S: Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. (0905-7161 (Print)). 53. George Km Fau - Choi Y-G, etal : Immediate restoration with ti-unite implants: practice-based evidence compared with animal study outcomes. (0893-2174 (Print)). 54. Rocci A Fau - Martignoni M, Martignoni M Fau - Gottlow J, Gottlow J: Immediate loading of Branemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. (1523-0899 (Print)). 55. Messer Rl Fau - Seta F, etal : Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite) under in vitro inflammatory and hyperglycemic conditions. (1552-4981 (Electronic)). 56. Gupta RK, Padmanabhan TV: AN EVALUATION OF THE RESONANCE FREQUENCY ANALYSIS DEVICE: EXAMINER RELIABILITY AND REPEATABILITY OF READINGS. (0160-6972 (Print)). 57. Gupta RK, Padmanabhan TV: An Evaluation of the Resonance Frequency Analysis Device: Examiner Reliability and Repeatability of Readings. The Journal of oral implantology 2011. 58. Herrero-Climent M, etal : Resonance frequency analysis-reliability in third generation instruments: Osstell mentor(R). (1698-6946 (Electronic)). 59. Herrero-Climent M, etal : Resonance frequency analysis-reliability in third generation instruments: Osstell mentor(R). Medicina oral, patologia oral y cirugia bucal 2012. 60. Gonzalez-Garcia R, Monje F, Moreno-Garcia C: Predictability of the resonance frequency analysis in the survival of dental implants placed in the anterior non-atrophied edentulous mandible. Medicina oral, patologia oral y cirugia bucal 2011, 16(5):e664-669. 61. Scarano A Fau - Carinci F, etal : Correlation between implant stability quotient (ISQ) with clinical and histological aspects of dental implants removed for mobility. (0394-6320 (Print)). 62. Sim Cp Fau - Lang NP, Lang NP: Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. (1600-0501 (Electronic)). 63. Kang Ih Fau - Kim C-W, etal : A comparative study on the initial stability of different implants placed above the bone level using resonance frequency analysis. (2005-7814 (Electronic)). 64. Fischer K Fau - Backstrom M, Backstrom M Fau - Sennerby L, Sennerby L: Immediate and early loading of oxidized tapered implants in the partially edentulous maxilla: a 1-year prospective clinical, radiographic, and resonance frequency analysis study. (1708-8208 (Electronic)). 65. Froum SJ, etal : Histologic evaluation of bone-implant contact of immediately loaded transitional implants after 6 to 27 months. The International journal of oral & maxillofacial implants 2005, 20(1):54-60. 66. Coelho PG, etal : Biomechanical and histologic evaluation of non-washed resorbable blasting media and alumina-blasted/acid-etched surfaces. Clin Oral Implants Res 2012, 23(1):132-135. 67. Iezzi G, etal : Histologic evaluation of 3 retrieved immediately loaded implants after a 4-month period. Implant Dent 2006, 15(3):305-312. 68. Ersanli S Fau - Karabuda C, etal : Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. (0022-3492 (Print)). 69. Pattijn V, etal : The resonance frequencies and mode shapes of dental implants: Rigid body behaviour versus bending behaviour. A numerical approach. J Biomech 2006, 39(5):939-947. 70. Cawley P, etal : The design of a vibration transducer to monitor the integrity of dental implants. Proc Inst Mech Eng H 1998, 212(4):265-272. 71. Cano-Sanchez J, etal : Undecalcified bone samples: a description of the technique and its utility based on the literature. Medicina oral, patologia oral y cirugia bucal 2005, 10 Suppl 1:E74-87. 72. Gotfredsen K, Budtz-Jorgensen E, Jensen LN: A method for preparing and staining histological sections containing titanium implants for light microscopy. Stain technology 1989, 64(3):121-127. 73. Maniatopoulos C, etal : An improved method for preparing histological sections of metallic implants. The International journal of oral & maxillofacial implants 1986, 1(1):31-37. 74. (羅聖全) 清: 研發奈米科技的基本工具之一 電子顯微鏡介紹– SEM. 75. 國立高雄第一科技大學機械系: SEM 的實作. 2003. 76. Esaki D, etal : Relationship between magnitude of immediate loading and peri-implant osteogenesis in dogs. Clinical Oral Implants Research 2011:n/a-n/a. 77. Sener BC, etal : Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 2009, 20(3):294-298. 78. Testori T, etal : Immediate occlusal loading of Osseotite implants in the lower edentulous jaw. A multicenter prospective study. Clin Oral Implants Res 2004, 15(3):278-284. 79. Magno Filho LC, etal : Assessment of the Correlation between Insertion Torque and Resonance Frequency Analysis of Implants placed in Bone Tissue of Different Densities. The Journal of oral implantology 2012. 80. Boronat-Lopez A, etal : Resonance frequency analysis after the placement of 133 dental implants. Medicina oral, patologia oral y cirugia bucal 2006, 11(3):E272-276. 81. Park KJ, etal : The relationship between implant stability quotient values and implant insertion variables: a clinical study. J Oral Rehabil 2012, 39(2):151-159. 82. Ure DS, etal : Stability changes of miniscrew implants over time. The Angle orthodontist 2011, 81(6):994-1000. 83. Rismanchian M, etal: Dental implants immediate loading versus the standard 2-staged protocol: an experimental study in dogs. The Journal of oral implantology 2012, 38(1):3-10. 84. Jung BA, Yildizhan F, Wehrbein H: Bone-to-implant contact of orthodontic implants in humans--a histomorphometric investigation. European journal of orthodontics 2008, 30(6):552-557. 85. Woods PW, etal : The effect of force, timing, and location on bone-to-implant contact of miniscrew implants. European journal of orthodontics 2009, 31(3):232-240. 86. Al-Hamdan K, etal : Effect of implant surface properties on peri-implant bone healing: a histological and histomorphometric study in dogs. Clin Oral Implants Res 2011, 22(4):399-405. 87. Bernhardt R, etal : Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRmicroCT slices. European cells & materials 2012, 23:237-248. 88. Mathieu V, etal : Influence of healing time on the ultrasonic response of the bone-implant interface. Ultrasound in medicine & biology 2012, 38(4):611-618. 89. Sivolella S, etal : Osteogenesis at implants without primary bone contact - An experimental study in dogs. Clin Oral Implants Res 2012, 23(5):542-549. 90. Jung UW, etal : Osseointegration of dental implants installed without mechanical engagement: a histometric analysis in dogs. Clin Oral Implants Res 2011. 91. Abed AM, etal : A Comparision of Two Types of Decalcified Freeze-Dried Bone Allograft in Treatment of Dehiscence Defects around Implants in Dogs. Dental research journal 2011, 8(3):132-137. 92. Abrahamsson I, Linder E, Lang NP: Implant stability in relation to osseointegration: an experimental study in the Labrador dog. Clin Oral Implants Res 2009, 20(3):313-318. 93. Schliephake H, Sewing A, Aref A: Resonance frequency measurements of implant stability in the dog mandible: experimental comparison with histomorphometric data. International journal of oral and maxillofacial surgery 2006, 35(10):941-946. 94. Iwasa F, etal : TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium. International journal of nanomedicine 2011, 6:1327-1341. 95. Holthaus MG, etal : Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater 2012, 8(1):394-403. 96. Ruffoni D, Wirth AJ, etal : The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone 2012, 50(3):733-738. 97. Hong J, Lim YJ, Park SO: Quantitative biomechanical analysis of the influence of the cortical bone and implant length on primary stability. Clin Oral Implants Res 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65000 | - |
dc.description.abstract | 以植體來取代缺失的牙齒,自1970年代發展自今,已成為目前牙科常見的治療方式。而植牙的成功與否端視骨整合而定,而骨整合卻需等待一段不算短的時間,許多文獻指出經特殊表面理後的植體可加速骨整合縮短癒合時間,重建一個穩定且可長期承受咬合力量的人工牙根,必須建立在植體表面骨細胞的生長鈣化。
我們實驗目的想評估不同表面處理的植體對於骨整合的影響。首先種植體經噴砂酸蝕合併鹼酸熱處理( Sand-blasted ,Large grit, Acid -etched combined Alkaline ,Acid , Heat surface treatment(SLA+AAH)) 的新型經覆合表面技作術人工牙根植體為實驗組,並配合經大顆礫噴砂酸蝕(Sand-blasted ,Large grit, Nobel Biocare之NP Acid –etched(SLA))表面處理植體,及另一種經陽極氧化處理的國外大廠產品(BK-NP)為對照組。主要研究分成經新型經覆合表面技作術開發出不同表面處理的鈦金屬牙科植體共一組( SLA+AAH)為實驗組,並配合大顆礫噴砂酸蝕(Sand-blasted ,Large grit, Acid –etched(SLA))表面處理植體為對照組一,國外大廠產品TiUnite表面處理(Nobel Biocare - NP)為對照組二。在本研究中,共分為4,8,12週組,每組使用三隻beagle dog,共使用9隻狗,每隻狗下顎左右兩側,隨機植入一支實驗組及二支對照組(SLA and TiUnite) 植體,並立即接上癒合樁暴露於口腔將中,另在8周組後腿,同樣隨機植入一支實驗組及二支對照組,作為移除扭力測試實驗用,以頻率分析儀(Osstell Mentor)在0,4,8,12週,在臨床上作非侵入性ISQ值測試,並同時觀察口內植體狀況。在動物犧牲後取得標本,切片觀察各組骨頭與植體的接觸(BIC),與骨生成範圍的變化。藉由電子顯微鏡下觀察,可以觀察到經不同的植體表面處理,會造成不同的表面型態,不同粗糙度,不同孔徑大小。而在對實驗組中( SLA+AAH),不論是在ISQ值表現,植體存活率,移除扭力測試,骨頭與植體的接觸與新骨生成範圍,相較SLA與TiUnite表面處理(Nobel Biocare - NP)為對照組,有統計上明顯差異。而就SLA+AAH與SLA及TiUnite表面來說,可能SLA+AAH表面先經SLA表面處理增加表面積,與較多的孔洞,再經酸鹼熱處理,表面有較多的類骨質鈣磷沉積,所以在扭力測試,骨頭與植體的接觸與骨生成範圍的表現都較佳。另一方面,在腿部移除扭力實驗中,因傷口緊密縫合,相較暴露於口腔中受細菌污染及咬合干擾,不論實驗組或對照組,他們在植體存活率,骨頭與植體的接觸與骨生成範圍都明顯較口腔中表現佳。就臨床上來講,粗糙化表面處理的植體仍是目前人工牙根的主流,但表面型態,不同粗糙度,不同孔徑大小及表面帶有類骨質鈣磷沉積,這些因素如何誘導更多骨細胞攀附在植體表面上,進一步加速骨整合的發生,則更需進一步的實驗證明。 | zh_TW |
dc.description.abstract | Since 1970s, replacement of missing teeth with dental implant has become a popular treatment option in dental treatment. The successful implant depended on the osseointegration between implant and bone which took a period of time for healing. Various surface treatment schemes on dental implant have being developed in order to hasten osseointegration thus shorten the healing time. Surface treatment scheme using sand-blasted, large grit, acid-etched surface treatment (SLA) has been proposed used for a period of time; however, SLA treated implant still need more healing time for osteointergration. Recently, a new surface treatment scheme using alkaline, acid and heat surface treatment (AAH) surface treatment has been proposed. The purpose of this study is to evaluate the effect of two new surface treatments (Sand-blasted ,Large grit, Acid -etched combined Alkaline ,Acid , Heat surface treatment(SLA+AAH)) on osseointegartion. Three different surface treatment implants with two type screw design, one surface treatment is SLA+AAH surface treatment type, the other is SLA (Sand-blasted, Large grit, Acid etched),with same screw design and TiUnite (Nobel Biocare - NP) were compared. Nine beagle dogs were enrolled in this study, divided into 3 groups (4, 8, 12 weeks), six dental implants were inserted in each dog included two experimental groups(SLA+AAH) and two control group(SLA and TiUnite). The assessments of implants are including clinical evaluation, survival rate, resonance frequency test and photo record. Experimental parameters including resonance frequency test(ISQ), bone implant contact (BIC) ,remove torque test were used to analysis the integration of bone and implant. The dogs were sacrificed at the time interval of 4, 8, 12 weeks for further histological analysis. In 8weeks group , implants were placed in tibia for removal torque test. The results showed the value of SLA+AAH surface treatment group in resonance frequency test is slightly higher than SLA group and TiUnite group . It seems that the potential for SLA+AAH chemical modification of the implant surface may possess good biologic events during the osseointegartion process and offer some superiority to implants with the SLA and TiUnite surface. Further study is needed to distinguish the variables for hastening of osseointegartion with modality of new surface treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:14:21Z (GMT). No. of bitstreams: 1 ntu-101-R99422027-1.pdf: 3781342 bytes, checksum: 9276e0e3b485a212af351c00d5ad16b5 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 第一章序論 1 1.1第一節 前言 1 1.2第二節 研究動機 2 1.3第三節 論文架構 2 第二章文獻回顧 3 2.1第一節 植牙傷口的癒合變化 3 2.1.1植牙癒合過程 3 2.1.2.參與骨整合之癒合機制 4 2.2 第二節 關於鈦金屬植體 5 2.2.1 鈦金屬特性: 5 2.2.2 可製成人工牙根的鈦 6 2.2.3 植體表面孔徑大小的關係 6 2.2.4植體的設計 7 2.2.5各種植體表面處理的概述 7 2.3第三節 本研究所欲評估的植體表面處理 11 2.3.1大砂礫噴砂酸蝕處理 SLA( Sand-blasted, Large grit, Acid -etched ) 11 2.3.2 大砂礫噴砂合併鹼酸熱表面處理(Sand-blasted ,Large grit, Acid -etched combined Alkaline ,Acid , Heat surface treatment) 12 2.3.3 TiUnite表面處理 13 2.4第四節 關於非侵入性測量方法 13 2.5第五節 關於骨頭與植體的接觸面積(bone implant contact ; 簡稱B.I.C)計算方法 14 2.6第六節 掃瞄式電子顯微鏡(Scanning Electron Microscopy; SEM) 15 第三章材料與方法 16 3.1第一節 實驗動物的選擇 16 3.2第二節 實驗植體材料與實驗設計 16 3.2.1人工植體的選擇 16 3.2.2實驗植體種類 16 3.2.3實驗設計 17 3.3第三節 植入人工牙根過程及術後照顧 17 3.3.1實驗動物的麻醉 17 3.3.2植牙手術過程及術後照顧 18 3.4 第四節 非侵入性臨床實驗觀察 19 3.4.1 臨床觀察及照顧 19 3.4.2 共振頻率測定方法 19 3.5 第五節 動物的犧牲及標本的取得 20 3.5.1福馬林藥水( formalin)的製備 20 3.5.2動物的犧牲 20 3.5.3標本的取得 21 3.5.4移除扭力測試(Removal torque test) 22 3.6 第六節 標本製作與染色 22 3.6.1標本的初步切割 22 3.6.2不含植體脫鈣標本的製備 22 3.6.3含植體磨片標本的製備 23 3.7 第七節骨與植體接觸(Bone Implant Contact)計算方法 24 3.8第八節電子顯微鏡(Scanning Electron Microscopy; SEM)下的觀察 24 3.9第九節本實驗所使用的統計方法 25 第四章 實驗結果 26 4.1第一節 存活率(Survival rate) 26 4.3第三節 骨與植體表面間接觸的百分比(BIC%) 28 4.4第四節 移除扭力測試(Removal torque test) 29 4.5第五節電子顯微鏡下之觀察 29 第五章 討論 30 5.1.第一節存活率之探討 30 5.2第二節植體穩定商數(ISQ)之探討 30 5.3第三節 骨與植體表面接觸百分比(BIC)之探討 31 5.4第四節植體穩定商數(ISQ)與骨與植體表面接觸百分比(BIC)之探討 32 5.5第五節電子顯微鏡下之探討 33 5.6第六節移除扭力測試之探討 33 5.7第七節 實驗設計限制之探討 33 第六章 結論 35 附表 36 附圖 46 參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 噴砂酸蝕合併鹼酸熱處理對牙科植體骨整合之影響評估:動物試驗 | zh_TW |
dc.title | Effect of Sand-blasted, Large grit, Acid-etched Combined
Alkaline, Acid, Heat Surface Treatment on Osteointergartion of Dental Implant: Animal study | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃翠賢(Tsui-Hsien Huang),廖運炫 | |
dc.subject.keyword | 骨整合,噴砂酸蝕合併鹼酸熱處理,大顆礫噴砂酸蝕處理,陽極氧化處理, | zh_TW |
dc.subject.keyword | osseointegration,SLA+AAH,Ti Unite resonance frequency test(ISQ),bone implant contact (BIC), | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-03 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。