Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64998
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩
dc.contributor.authorHsin-Hua Wangen
dc.contributor.author王新驊zh_TW
dc.date.accessioned2021-06-16T23:14:15Z-
dc.date.available2017-12-10
dc.date.copyright2012-12-10
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationChapter 1
1. E. O. Schafer-Nolte, T. Stoica, T. Gotschke, F. Limbach, E. Sutter, P. Sutter and R. Calarco, Applied Physics Letters 96 (9), 091907-091903 (2010).
Chapter 2
1. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto and H. Koinuma, Appl Phys Lett 77 (14), 2204-2206 (2000).
2. D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung and M. Razeghi, Appl Phys Lett 88 (14), 141918 (2006).
3. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars and T. Sota, Appl Phys Lett 73 (14), 2006-2008 (1998).
4. T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki and M. Kawasaki, Appl Phys Lett 84 (7), 1079-1081 (2004).
5. H. Matsui and H. Tabata, Appl Phys Lett 94 (16), 161907 (2009).
6. Y. T. Ho, W. L. Wang, C. Y. Peng, W. C. Chen, M. H. Liang, J. S. Tian and L. Chang, Thin Solid Films 518 (11), 2988-2991 (2009).
7. S. Tripathy, S. J. Chua, P. Chen and Z. L. Miao, J Appl Phys 92 (7), 3503-3510 (2002).
8. I. Shein, V. Kiĭko, Y. Makurin, M. Gorbunova and A. Ivanovskiĭ, Physics of the Solid State 49 (6), 1067-1073 (2007).
9. T. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer and A. Waag, J Appl Phys 96 (1), 289-293 (2004).
10. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch, Phys Rev B 60 (4), 2340-2344 (1999).
11. J. L. Birman, Phys Rev Lett 2 (4), 157-159 (1959).
12. A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause and H. O. Everitt, Phys Rev B 70 (19), 195207 (2004).
13. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck and A. V. Rodina, Physica Status Solidi B-Basic Research 241 (2), 231-260 (2004).
14. M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke and R. Sauer, Phys Rev B 77 (12), 125215 (2008).
15. M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, R. Sauer and K. Thonke, Physica B 401, 362-365 (2007).
16. D. H. Chi, L. T. T. Binh, N. T. Binh, L. D. Khanh and N. N. Long, Appl Surf Sci 252 (8), 2770-2775 (2006).
17. S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn and K. H. Ploog, Phys Rev B 65 (7), 075202 (2002).
18. J. Wrzesinski and D. Frohlich, Phys Rev B 56 (20), 13087-13093 (1997).
19. W. L. Wang, Y. T. Ho, K. A. Chiu, C. Y. Peng and L. Chang, J Cryst Growth 312 (8), 1179-1182 (2010).
Chapter 3
1. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars and T. Sota, Appl Phys Lett 73 (14), 2006-2008 (1998).
2. S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. S. Nam, S. K. Chang, T. Minegishi and T. Yao, J Cryst Growth 309 (2), 121-127 (2007).
3. J.-M. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain and B. Vinter, Semiconductor Science and Technology 23 (3), 035005 (2008).
4. D. C. Park, S. Fujita and S. Fujita, physica status solidi (a) 176 (1), 579-582 (1999).
5. A. Strittmatter, A. Krost, V. Turck, M. Strasburg, D. Bimberg, J. Blasing, T. Hempel, J. Christen, B. Neubauer, D. Gerthsen, T. Christmann and B. K. Meyer, Materials Science and Engineering: B 59 (1–3), 29-32 (1999).
6. K. Chung, C. H. Lee and G. C. Yi, Science 330 (6004), 655-657 (2010).
7. Y. W. Zhang, X. M. Li, W. D. Yu, C. Yang, X. Cao, X. D. Gao, J. F. Kong, W. Z. Shen, J. L. Zhao and X. W. Sun, J Phys D Appl Phys 42 (7), 075410 (2009).
8. Y. L. Wu, L. W. Zhang, G. L. Xie, J. Ni and Y. H. Chen, Solid State Commun 148 (5-6), 247-250 (2008).
9. S. N. Bai and T. Y. Tseng, Thin Solid Films 515 (3), 872-875 (2006).
10. D. Bao, H. Gu and A. Kuang, Thin Solid Films 312 (1–2), 37-39 (1998).
11. D. H. Cho, J. H. Kim, B. M. Moon, Y. D. Jo and S. M. Koo, Appl Surf Sci 255 (6), 3480-3484 (2009).
12. C. H. Jia, Y. H. Chen, G. H. Liu, X. L. Liu, S. Y. Yang and Z. G. Wang, J Phys D Appl Phys 42 (1), 015415 (2009).
13. Y.-T. Ho, W.-L. Wang, C.-Y. Peng, M.-H. Liang, J.-S. Tian, C.-W. Lin and L. Chang, Appl Phys Lett 93 (12), 121911-121913 (2008).
14. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima and H. Koinuma, Appl Phys Lett 85 (2), 272-274 (2004).
15. S. J. Henley, M. N. R. Ashfold, D. P. Nicholls, P. Wheatley and D. Cherns, Appl Phys a-Mater 79 (4-6), 1169-1173 (2004).
16. W. Zheng, Y. Liao, L. Li, Q. Yu, G. Wang, Y. Li and Z. Fu, Appl Surf Sci 253 (5), 2765-2769 (2006).
17. C. Pandis, N. Brilis, D. Tsamakis, H. A. Ali, S. Krishnamoorthy and A. A. Iliadis, Solid-State Electronics 50 (6), 1119-1123 (2006).
18. J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew and Y. F. Lu, Appl Surf Sci 197–198 (0), 362-367 (2002).
19. F. K. Shan, B. C. Shin, S. W. Jang and Y. S. Yu, Journal of the European Ceramic Society 24 (6), 1015-1018 (2004).
20. S. J. Henley, M. N. R. Ashfold, D. P. Nicholls, P. Wheatley and D. Cherns, Applied Physics A: Materials Science & Processing 79 (4), 1169-1173 (2004).
21. J. H. Choi, H. Tabata and T. Kawai, J Cryst Growth 226 (4), 493-500 (2001).
22. F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis and R. C. Haddon, J Cryst Growth 286 (1), 61-65 (2006).
23. S. S. Kim and B.-T. Lee, Thin Solid Films 446 (2), 307-312 (2004).
24. H. Z. Wu, K. M. He, D. J. Qiu and D. M. Huang, J Cryst Growth 217 (1–2), 131-137 (2000).
25. K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, S. Fujita and S. Fujita, J Cryst Growth 237–239, Part 1 (0), 553-557 (2002).
26. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch, Phys Rev B 60 (4), 2340-2344 (1999).
27. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, Mat Sci Eng B-Solid 102 (1-3), 313-316 (2003).
28. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding and W. K. Ge, J Phys Chem B 110 (42), 20865-20871 (2006).
29. A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Nanotechnology 18 (9), 095702 (2007).
30. P. Erhart, K. Albe and A. Klein, Phys Rev B 73 (20), 205203 (2006).
Chapter 4
1. R. Gupta, Q. Xiong, G. D. Mahan and P. C. Eklund, Nano Lett 3 (12), 1745-1750 (2003).
2. Q. H. Xiong, J. G. Wang, O. Reese, L. C. L. Y. Voon and P. C. Eklund, Nano Lett 4 (10), 1991-1996 (2004).
3. S. Bhattacharya, A. Datta, S. Dhara and D. Chakravorty, J Raman Spectrosc 42 (3), 429-433 (2011).
4. Y. F. Huang, S. Chattopadhyay, H. C. Hsu, C. T. Wu, K. H. Chen and L. C. Chen, Opt Mater Express 1 (4), 535-542 (2011).
5. D. Fan, R. Zhang, Y. Zhu and H. Peng, Physica B: Condensed Matter 407 (17), 3510-3514 (2012).
6. R. Mata, A. Cros, K. Hestroffer and B. Daudin, Physical Review B 85 (3), 035322 (2012).
7. I. M. Tiginyanu, A. Sarua, G. Irmer, J. Monecke, S. M. Hubbard, D. Pavlidis and V. Valiaev, Physical Review B 64 (23), 233317 (2001).
8. G. D. Mahan, R. Gupta, Q. Xiong, C. K. Adu and P. C. Eklund, Physical Review B 68 (7), 073402 (2003).
9. H. Lange, M. Artemyev, U. Woggon and C. Thomsen, Nanotechnology 20 (4), 045705 (2009).
10. JCPDS, (JCPDS - International Centre for Diffraction Data, 1967).
11. C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Phys Rev 181 (3), 1351 (1969).
12. H. Harima, J Phys-Condens Mat 14 (38), R967-R993 (2002).
13. R. Loudon, Advances in Physics 13 (52), 423-482 (1964).
14. R. Rossetti, R. Hull, J. M. Gibson and L. E. Brus, J Chem Phys 82 (1), 552-559 (1985).
15. D. Spirkoska, G. Abstreiter and A. F. I Morral, Nanotechnology 19 (43), 435704 (2008).
16. K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen and P. C. Eklund, Appl Phys a-Mater 85 (3), 287-297 (2006).
17. S. Sahoo, S. Dhara, A. K. Arora, R. Krishnan, P. Chandramohan and M. P. Srinivasan, Applied Physics Letters 96 (10), 103113-103113 (2010).
18. J. H. Zhu, J. Q. Ning, C. C. Zheng, S. J. Xu, S. M. Zhang and H. Yang, Applied Physics Letters 99 (11), 113115-113113 (2011).
19. M. A. Stroscio, K. W. Kim, M. A. Littlejohn and H. H. Chuang, Physical Review B 42 (2), 1488-1491 (1990).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64998-
dc.description.abstract本論文首先探討了張應力對於m面氧化鋅光學異向性的影響。從光激發螢光光譜,我們發現非極化面中的m面氧化鋅的放光異向性僅有10%的極化度,因此我們利用變溫、變極化方向光激發螢光光譜,探討低放光異向性的原因。我們發現在受到張應力的m面氧化鋅中,其極化方向為[0001]的價帶次能帶上升至極化方向為[11-20]的價帶次能帶並與之重疊,因此導致了此非極化面氧化鋅的低放光異向性。建立於此發現,未來再利用鑭鋁酸或鍶鈦酸成長非極化面氧化鋅時,需特別注意其應力對於我們希望得到的具有放光光學異向性的影響。
接著,我們利用 鍶鈦酸作為緩衝層,將非極化面中的a面氧化鋅成長於(001)矽基板上,我們成功的藉由調變基板溫度和氧壓,控制了氧化鋅中不同晶面方向的成長,同時也控制了表面粗糙的程度。此技術在未來可以被用在在矽基板上成長非極化面氧化鋅相關光學元件或是利用其作為緩衝層成長氮化鎵元件於矽基板上。
最後,我們藉由硫化鋅奈米腰帶上極強的表面聲子訊號,研究了表面聲子在拉曼散射中的選擇律。由變極化方向的拉曼光譜,我們發現表面聲子的選擇律異於其對應硫化鋅完美晶體中的聲子,我們認為表面上移動對稱性的異向性破壞,是為此選擇律被打破的主要原因。
zh_TW
dc.description.abstractFirstly, in order to investigated the optical anisotropy of tensile-strained m-plane ZnO film grown on (112)LaAlO3, temperature and polarization dependent photoluminescence (PL) measurements were performed. The near band edge emission of this non-polar ZnO film shows abnormal low polarization degree (ρ=10%) in PL spectra. To further investigate this characteristic, we studied on the temperature dependency of polarization degree to clarify the origins of different emission peaks. We found that in tensile-strained m-plane ZnO, the [0001] polarized subband upper-shifts and overlaps with the [11-20] polarized subband, causing the abnormal low polarization degree.
Secondly, we demonstrated the controlled-growth of non-polar a-plane ZnO on (001)Si substrate by using (001)SrTiO3 as buffer layer. Preferential growth of a-plane ZnO is observed for low substrate temperature and high oxygen pressure. The relation between growth condition and surface roughness of the film is investigated and found to closely relate to the existence of c-plane ZnO. This study offers a promising scheme for controlled growth of non-polar a-plane ZnO on (001)Si and is applicable for further application of ZnO itself or for GaN on (001) Si by using this non-polar ZnO film as buffer layer. High quality ZnS nanobelts (NBs) have been grown by chemical vapor deposition.
Finally, on ZnS NBs, we observed strong surface optical (SO) phonon signal and attributed it to the high aspect ratio of ZnS NBs. The selection rule of SO phonon mode was investigated by polarization dependent Raman spectrum performed on single ZnS NB. The selection rule of SO phonon mode is different from the corresponding E1/A1 phonon modes and we ascribed the breakdown of selection rule to the anisotropic translational symmetry breaking on surface.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:14:15Z (GMT). No. of bitstreams: 1
ntu-101-R98941090-1.pdf: 2452798 bytes, checksum: 9974970a043646de9d55b1336cfe2b51 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試審定書 #
誌謝 i
摘要 iii
ABSTRACT iv
Contents vi
List of Figures & Table viii
Chapter 1 Introduction 1
1.1 Introduciton 1
1.2 Reference 2
Chapter 2 The effect of tensile strain on the optical anisotropy of m-plane ZnO grown on (112)LaAlO3 3
2.1 Introduction 3
2.2 Experimental Setup 4
2.3 Result and Discussion 5
2.4 Summary 11
2.5 Reference 11
2.6 Figures 13
Chapter 3 Controlled growth of non-polar a-plane ZnO film grown on (001) Silicon 17
3.1 Introduction 17
3.2 Experimental setup 18
3.3 Results and discussion 18
3.4 Summary 23
3.5 References 24
3.6 Figures and Table 27
Chapter 4 Breakdown of Raman selection rule of surface optical phonon in ZnS nanobelt 31
4.1 Introduction 31
4.2 Experiment setup 32
4.3 Results and discussion 33
4.4 Summary 38
4.5 References 38
4.6 Figures 41
Chapter 5 Conclusion 44
作者簡介 45
dc.language.isoen
dc.subject氧化鋅成長於矽基板zh_TW
dc.subject張應力zh_TW
dc.subject非極化面氧化鋅zh_TW
dc.subject選擇律zh_TW
dc.subject表面聲子zh_TW
dc.subjectnon-polar ZnOen
dc.subjecttensile strainen
dc.subjectZnO on siliconen
dc.subjectsurface phononen
dc.subjectselection ruleen
dc.title奈米材料與薄膜的光學異向性zh_TW
dc.titleOptical anisotropy of nanomaterials and filmsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范智勇,何頌賢,賴昆佑,葉炳宏
dc.subject.keyword非極化面氧化鋅,張應力,氧化鋅成長於矽基板,表面聲子,選擇律,zh_TW
dc.subject.keywordnon-polar ZnO,tensile strain,ZnO on silicon,surface phonon,selection rule,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved