請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64992完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.author | Tsung-Cheng Chen | en |
| dc.contributor.author | 陳宗銓 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:13:14Z | - |
| dc.date.available | 2017-08-03 | |
| dc.date.copyright | 2012-08-03 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | [1] FCC, 'First Report and Order', FCC, 02-48, Apr 2002.
[2] J. D. Taylor, 'Ultra-Wideband Radar technology,' CRC Press, New York, 2001 [3] E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, 'Microwave imaging via space-time beamforming for early detection of breast cancer,' Ieee Transactions on Antennas and Propagation, vol. 51, pp. 1690-1705, Aug 2003. [4] X. Y. Li, M. Jalilvand, L. Zwirello, and T. Zwick, 'Synthetic Aperture-Based UWB Imaging System for Detection of Urine Accumulation in Human Bladder,' 2011 Ieee International Conference on Ultra-Wideband (Icuwb), pp. 351-354, 2011. [5] D. Gazelle, A. Beeri, and R. Daisy, 'Signal acquisition and method for ultra-wideband (UWB) radar,' US Patent 7,773,031, Aug 2010. [6] F. Sakai and K. Ohta, 'An experimental study of novel scanning system suitable for UWB radar application,' 2010 Asia-Pacific Microwave Conference (Apmc), pp.1689-1692, 7-10 Dec 2010. [7] S. Venkatesh, C. R. Anderson, N. V. Rivera, and R. M. Buehrer, 'Implementation and analysis of respiration-rate estimation using impulse-based UWB,' 2005 Ieee Military Communications Conference, Vols 1-5, pp. 3314-3320, 2005. [8] Z. F. Zeng, J. G. Sun, J. Li, F. S. Liu, Q. Lu, and X. Chen, 'The Analysis of TWI Data for Human Being's Periodic Motions,' 2011 Ieee International Geoscience and Remote Sensing Symposium (Igarss), pp. 862-865, 2011. [9] A. Sharafi, M. Baboli, and M. Eshghi, 'A New Algorithm for Detection Motion Rate Based on Energy in Frequency Domain Using UWB Signals,' 2010 International Conference on Bioinformatics and Biomedical Engineering (Icbbe), pp.1-4, Jun 2010. [10] G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel, 'Non-invasive respiratory movement detection and monitoring of hidden humans using Ultra Wideband pulse radar,' 2004 Joint Uwbst & Iwuwbs, Conference Proceedings, pp. 395-399, 2004. [11] B. Levitas and J. Matuzas, 'UWB radar for breath detection,' 2010 11th International Radar Symposium (IRS), pp.1-3, 16-18 Jun 2010. [12] J. Sun and M. Li, 'Life detection and location methods using UWB impulse radar in a coal mine,' Mining Science and Technology (China), vol. 21, no.5, pp.687-691, Sep 2011. [13] K. Higashikaturagi, Y. Nakahata, I. Matsunami, and A. Kajiwara, 'Non-Invasive Respiration Monitoring Sensor Using UWB-IR,' 2008 Ieee International Conference on Ultra-Wideband (Icuwb), vol. 1, pp. 101-104, 2008. [14] S. Q. Zhu, G. S. Liao, Y. Qu, Z. G. Zhou, and X. Y. Liu, 'Ground Moving Targets Imaging Algorithm for Synthetic Aperture Radar,' Ieee Transactions on Geoscience and Remote Sensing, vol. 49, pp. 462-477, Jan 2011. [15] C. Kasai, 'Real-Time Two-Dimensional Blood-Flow Imaging Using an Autocorrelation Technique,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 33, pp. 94-94, Jan 1986. [16] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, 'Localization via ultra-wideband radios,' Ieee Signal Processing Magazine, vol. 22, pp. 70-84, Jul 2005. [17] M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, 'Radar-Based Breast Cancer Detection Using a Hemispherical Antenna Array-Experimental Results,' Ieee Transactions on Antennas and Propagation, vol. 57, pp. 1692-1704, Jun 2009. [18] L. M. H. Ulander and T. Martin, 'Bistatic ultra-wideband SAR for imaging of ground targets under foliage,' 2005 Ieee International Radar, Conference Record, pp. 419-423, 2005. [19] V. T. Vu, T. K. Sjogren, M. I. Pettersson, A. Gustavsson, and L. M. H. Ulander, 'Detection of Moving Targets by Focusing in UWB SAR-Theory and Experimental Results,' Ieee Transactions on Geoscience and Remote Sensing, vol. 48, pp. 3799-3815, Oct 2010. [20] Y. T. Dong, P. R. Runkle, L. Carin, R. Damarla, A. Sullivan, M. A. Ressler, and J. Sichina, 'Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar,' Ieee Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1259-1270, Jun 2001. [21] T. Jin and Z. M. Zhou, 'Ultrawideband synthetic aperture radar landmine detection,' Ieee Transactions on Geoscience and Remote Sensing, vol. 45, pp. 3561-3573, Nov 2007. [22] X. Zhuge, T. G. Savelyev, A. G. Yarovoy, L. P. Ligthart, J. Matuzas, and B. Levitas, 'Human Body Imaging by Microwave UWB Radar,' 2008 European Radar Conference, pp. 148-151, 2008. [23] T. Dogaru and C. Le, 'Recent Investigations in Sensing Through the Wall Radar Modeling,' 2008 Ieee Antennas and Propagation Society International Symposium, Vols 1-9, pp. 1316-1319, 2008. [24] M. I. Pettersson, 'Detection of moving targets in wideband SAR,' Ieee Transactions on Aerospace and Electronic Systems, vol. 40, pp. 780-796, Jul 2004. [25] S. W. Flax and M. Odonnell, 'Phase-Aberration Correction Using Signals from Point Reflectors and Diffuse Scatterers - Basic Principles,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 35, pp. 758-767, Nov 1988. [26] K. W. Hollman, K. W. Rigby, and M. O'Donnell, 'Coherence factor of speckle from a multi-row probe,' 1999 Ieee Ultrasonics Symposium Proceedings, Vols 1 and 2, pp. 1257-1260, 1999. [27] P. C. Li and M. L. Li, 'Adaptive imaging using the generalized coherence factor,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 50, pp. 128-141, Feb 2003. [28] N.V. Rivera, S. Venkatesh, C.R. Anderson, and R.M. Buehrer, 'Multi-target estimation of heart and respiration rate using ultra-wideband sensors,' 14th European Signal Processing Conference, Sep 2006. [29] Y. Li, X. Jing, H. Lv, and J. Wang, 'Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar,' Progress In Electromagnetics Research, vol. 126, pp.429-447, 2012. [30] J. K. Jao, 'Theory of synthetic aperture radar imaging of a moving target,' IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1984-1992, Sep 2001. [31] S. Q. Zhu, G. S. Liao, Y. Qu, Z. G. Zhou, and X. Y. Liu, 'Ground Moving Targets Imaging Algorithm for Synthetic Aperture Radar,' IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 462-477, Jan 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64992 | - |
| dc.description.abstract | 本研究的主旨為利用超寬頻雷達偵測人體呼吸運動,而本研究的主要貢獻為超寬頻雷達的信號處理演算法之改良設計及系統整合實現。文獻中已有相關的研究探討利用超寬頻雷達所接收到一維資訊偵測呼吸及心跳,而他們的方式為利用互相關函數(cross-correlation function)或直接利用頻譜分析的方式。但以上方法的問題為效能將會取決於其取樣頻率且皆僅分析一維的資訊,因此無法得知物體在空間中的確切位置。在此研究中,利用自相關函數(auto-correlation function),改為估計信號的相位,以解除取樣頻率及解析度之間的直接關係。利用此方法所估計的人體呼吸頻率,誤差僅有8%。除此之外,為了要能夠得知物體的二維位置,利用合成孔徑的技術將接收到的超寬頻信號做二維成像。兩種方法:相位校正法(phase-correction method)及同調性因子可適性權重法(generalized coherence factor based adaptive imaging method),也被應用來增進影像的品質。結果發現此兩種方法的結合將可以同時降低主瓣寬度至原來主瓣寬度之40%,及降低旁瓣強度達20dB。最後則提出能夠結合合成孔徑成像技術並偵測人體呼吸運動的演算法。其偵測原理為利用廣義非同調性因子(generalized incoherence factor):在物體有呼吸運動的區域,其廣義非同調因子的值將較高。加以利用濾波器組(filter bank)的技術並定義濾波器組廣義同調性因子(filter bank based generalized coherence factor)以分析信號頻域特性,將可以同時評估呼吸運動的頻率。由廣義非同調性因子演算法所得到的影像強度,分別在人體有呼吸運動及沒有呼吸運動的區域,其比例約接近33 (30dB);而使用濾波器組廣義同調性因子演算法的結果,在與人體呼吸頻率不同/相同的濾波器中所得到的能量比例為8.33 (18dB)。 | zh_TW |
| dc.description.abstract | The purpose of this research is to use Ultra-wideband (UWB) Radar for human respiratory motion detection and the main contributions of this study are the design of UWB radar signal processing algorithms as well as its system implementation. Prior researches in the literature on the use of UWB radars for human respiratory motion detection are mainly based on cross-correlation functions or spectrum analysis. These methods typically require high sampling frequency and often only capable of 1D measurements. In this study, the auto-correlation function is used instead in order to achieve higher resolution and alleviate the limitation on the sampling rate. The estimation error of the breathing rate is 8%. In addition, the synthetic aperture technique is also used for 2D imaging. Two methods, including the phase-correction method and the generalized coherence factor method, have been applied for image quality improvements. And it was found that the combination of the two methods can reduce the mainlobe width to 40% of its original width and reduce the sidelobe level by 20dB. Finally, an algorithm that combines the synthetic aperture technique and human respiratory motion detection was proposed. The algorithm makes use of the generalized incoherence factor (GICF), and the value of GICF increases at the region where there is human respiratory motion. In addition, the respiratory motion rate is estimated by defining filter bank based GCF (FBGCF). The image intensity at regions with and without breathing human has a ratio of 33 (30dB). And for the FBGCF method, the ratio of the energy at the filter that corresponds to human respiratory motion and the energies at the other filters is 8 (18dB). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:13:14Z (GMT). No. of bitstreams: 1 ntu-101-R99945010-1.pdf: 4172050 bytes, checksum: 823da919e45926363dd6bf8f7ff391f5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
致謝 i 中文摘要 ii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv CHAPTER 1 INTRODUCTION 1 1.1. Introduction to Ultra-wideband signals 1 1.1.1. Definition and features of an ultra-wideband (UWB) signal 1 1.1.2. The range resolution and the range equation 2 1.1.3. UWB impulse waveform 3 1.1.4. The applications of UWB radars 5 1.2. Human respiratory motion detection using UWB radars 6 1.3. Research motivation and objectives 9 1.4. Existing UWB impulse radar system 10 1.5. Thesis organization 14 CHAPTER 2 UWB 1D RESPIRATORY MOTION DETECTION 16 2.1. Introduction 16 2.2. Auto-correlation based respiratory motion estimation technique 16 2.2.1. Measurement setup and system configurations 16 2.2.2. Auto-correlation method for respiratory motion estimation 17 2.2.3. Automatic moving-target-detection aided auto-correlation method 20 2.3. Experimental results 21 2.3.1. Metal plate with periodic movement 21 2.3.2. A breathing human 23 2.3.3. A breathing human behind the wall 29 2.4. Concluding remarks 32 CHAPTER 3 UWB SYNTHETIC APERTURE IMAGING 34 3.1. Introduction 34 3.1.1. Synthetic aperture focusing (SAFT) radiation pattern 35 3.1.2. Spatial resolution 38 3.2. UWB synthetic aperture radar imaging system 39 3.2.1. Measurement setup and system configurations 39 3.2.2. Data pre-processing techniques 39 3.2.3. Delay-and-Sum beamforming technique 40 3.3. Recursive imaging technique 42 3.4. Phase-correction method 43 3.5. GCF-based adaptive imaging method 45 3.5.1. Coherence factor (CF) and generalized coherence factor (GCF) 45 3.5.2. Adaptive imaging technique 49 3.6. Experimental results 50 3.6.1. UWB SAR imaging results 50 3.6.2. Phase-correction method results 59 3.6.3. GCF-based adaptive imaging method results 61 3.7. Concluding remarks 66 CHAPTER 4 UWB 2D RESPIRATORY MOTION DETECTION 67 4.1. Introduction 67 4.2. Frequency domain features of aperture data related with respiratory motion 68 4.2.1. Measurement setup and system configurations 68 4.2.2. Mathematical derivation of the relation 69 4.3. Human respiratory motion detection and estimation based on frequency domain information 73 4.3.1. Generalized coherence factor based detection method 73 4.3.2. Filter bank based GCF (FBGCF) method 76 4.3.3. Parameters setting for GICF and FBGCF method 78 4.4. Simulation results 79 4.4.1. One periodically moving target and one static target – GICF 79 4.4.2. Distances being white Gaussian random variables – GICF 83 4.4.3. Periodic motions with different amplitude and frequency - Filter bank 85 4.5. Experimental results 89 4.5.1. Three periodically moving metal targets – GICF 89 4.5.2. A human with different respiratory motion rates – GICF and FBGCF 91 4.5.3. Two humans with different respiratory motion rates (0.2Hz/0.4Hz) – GICF and FBGCF 95 4.5.4. The two human with different respiration rates (0.2Hz/0.5Hz) and a static metal target behind a wall– GICF and FBGCF 99 4.6. Concluding remarks 102 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 105 References 108 Appendix A - Broadband Horn Antenna Specification 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超寬頻合成孔徑雷達 | zh_TW |
| dc.subject | 濾波器組廣義同調性因子 | zh_TW |
| dc.subject | 廣義非同調性因子 | zh_TW |
| dc.subject | 同調性因子可適性權重法 | zh_TW |
| dc.subject | 相位校正法 | zh_TW |
| dc.subject | 自相關函數 | zh_TW |
| dc.subject | 人體呼吸運動之偵測 | zh_TW |
| dc.subject | filter bank based GCF (FBGCF) | en |
| dc.subject | human respiratory motion detection | en |
| dc.subject | auto-correlation method | en |
| dc.subject | phase-correction method | en |
| dc.subject | generalized coherence factor based adaptive imaging method | en |
| dc.subject | generalized incoherence factor (GICF) | en |
| dc.subject | UWB synthetic aperture radar | en |
| dc.title | 利用超寬頻雷達偵測與評估人體呼吸運動 | zh_TW |
| dc.title | Ultra-wideband Radar for Human Respiratory Motion Detection and Estimation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李枝宏(Ju-Hong Lee),林宗賢(Tsung-Hsien Lin),林怡成(Yi-Cheng Lin) | |
| dc.subject.keyword | 超寬頻合成孔徑雷達,人體呼吸運動之偵測,自相關函數,相位校正法,同調性因子可適性權重法,廣義非同調性因子,濾波器組廣義同調性因子, | zh_TW |
| dc.subject.keyword | UWB synthetic aperture radar,human respiratory motion detection,auto-correlation method,phase-correction method,generalized coherence factor based adaptive imaging method,generalized incoherence factor (GICF),filter bank based GCF (FBGCF), | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
