請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64975完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚 | |
| dc.contributor.author | Wen-Ling Chen | en |
| dc.contributor.author | 陳玟伶 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:11:18Z | - |
| dc.date.available | 2014-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | 1. Burkhardt-Holm, P. Endocrine Disruptors and Water Quality: A State-of-the-Art Review. Int. J. Water Resour. D. 2010, 26, (3), 477-493.
2. Ankley, G. T.; Jensen, K. M.; Kahl, M. D.; Durhan, E. J.; Makynen, E. A.; Cavallin, J. E. et al. Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquat. Toxicol. 2010, 99, (3), 389-396. 3. Dinizi, M. S.; Mauricio, R.; Petrovic, M.; De Alda, M. J. L.; Amaral, L.; Peres, I. et al. Assessing the estrogenic potency in a Portuguese wastewater treatment plant using an integrated approach. J. Environ. Sci. 2010, 22, (10), 1613-1622. 4. Jespersen, A.; Rasmussen, T. H.; Hirche, M.; Sorensen, K. J. K.; Korsgaard, B. Effects of exposure to the xenoestrogen octylphenol and subsequent transfer to clean water on liver and gonad ultrastructure during early development of Zoarces viviparus embryos. J. Exp. Zool. Part A 2010, 313A, (7), 399-409. 5. Hatef, A.; Alavi, S. M. H.; Linhartova, Z.; Rodina, M.; Policar, T.; Linhart, O. In vitro effects of Bisphenol A on sperm motility characteristics in Perca fluviatilis L. (Percidae; Teleostei). J. Appl. Ichthyol. 2010, 26, (5), 696-701. 6. Beklioglu, M.; Akkas, S. B.; Ozcan, H. E.; Bezirci, G.; Togan, I. Effects of 4-nonylphenol, fish predation and food availability on survival and life history traits of Daphnia magna straus. Ecotoxicology 2010, 19, (5), 901-910. 7. Zhou, H. D.; Huang, X.; Wang, X. L.; Zhi, X. H.; Yang, C. D.; Wen, X. H. et al. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China. Environ. Monit. Assess. 2010, 161, (1-4), 107-121. 8. Li, X. L.; Luan, T. G.; Liang, Y.; Wong, M. H.; Lan, C. Y. Distribution patterns of octylphenol and nonylphenol in the aquatic system at Mai Po Marshes Nature Reserve, a subtropical estuarine wetland in Hong Kong. J. Environ. Sci. 2007, 19, (6), 657-662. 9. Huang, G. L.; Hou, S. G.; Wang, L.; Sun, H. W. Distribution and fate of nonylphenol in an aquatic microcosm. Water Res. 2007, 41, (20), 4630-4638. 10. Oehlmann, J.; Oetken, M.; Schulte-Oehlmann, U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption, Workshop on Plastic World, Erice, ITALY, Aug 19-24, 2006; Academic Press Inc Elsevier Science: Erice, ITALY, 2006; pp 140-149. 11. Oehlmann, J.; Oetken, M.; Schulte-Oehlmann, U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ. Res. 2008, 108, (2), 140-149. 12. Navarro, A.; Tauler, R.; Lacorte, S.; Barcelo, D. Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J. Hydrol. 2010, 383, (1-2), 18-29. 13. Filby, A. L.; Shears, J. A.; Drage, B. E.; Churchley, J. H.; Tyler, C. R. Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish. Environ. Sci. Technol. 2010, 44, (11), 4348-4354. 14. Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Environ. Pollut. 2007, 147, (3), 683-690. 15. Petrovic, M.; Eljarrat, E.; de Alda, M. J. L.; Barcelo, D. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal. Bioanal. Chem. 2004, 378, (3), 549-562. 16. Loos, R.; Hanke, G.; Umlauf, G.; Eisenreich, S. J. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 2007, 66, (4), 690-699. 17. Ribeiro, C.; Tiritan, M. E.; Rocha, E.; Rocha, M. J. Development and validation of a HPLC-DAD method for determination of several endocrine disrupting compounds in estuarine water. J. Liq. Chromatogr. Relat. Technol. 2007, 30, (18), 2729-2746. 18. Chen, T. C.; Shue, M. F.; Yeh, Y. L.; Kao, T. J. Bisphenol A occurred in Kao-Pin River and its tributaries in Taiwan. Environ. Monit. Assess. 2010, 161, (1-4), 135-145. 19. Korner, W.; Bolz, U.; Sussmuth, W.; Hiller, G.; Schuller, W.; Hanf, V. et al. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 2000, 40, (9-11), 1131-1142. 20. Lai, K. M.; Scrimshaw, M. D.; Lester, J. N. The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Crit. Rev. Toxicol. 2002, 32, (2), 113-132. 21. Ying, G. G.; Kookana, R. S.; Ru, Y. J. Occurrence and fate of hormone steroids in the environment. Environ. Int. 2002, 28, (6), 545-551. 22. Kumar, V.; Nakada, N.; Yamashita, N.; Johnson, A. C.; Tanaka, H. How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments. Environ. Pollut. 2011, 159, (10), 2906-2912. 23. Johnson, A. C. Natural Variations in Flow Are critical in determining concentrations of point source contaminants in rivers: an estrogen example. Environ. Sci. Technol. 2010, 44, (20), 7865-7870. 24. Chen, T. S.; Chen, T. C.; Yeh, K. J. C.; Chao, H. R.; Liaw, E. T.; Hsieh, C. Y. et al. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Sci. Total Environ. 2010, 408, (16), 3223-3230. 25. Kavanagh, R. J.; Balch, G. C.; Kiparissis, Y.; Niimi, A. J.; Sherry, J.; Tinson, C. et al. Endocrine disruption and altered gonadal development in white perch (Morone americana) from the lower Great Lakes region. Environ. Health Perspect. 2004, 112, (8), 898-902. 26. Kelly, M. A.; Reid, A. M.; Quinn-Hosey, K. M.; Fogarty, A. M.; Roche, J. J.; Brougham, C. A. Investigation of the estrogenic risk to feral male brown trout (Salmo trutta) in the Shannon International River Basin District of Ireland. Ecotox. Environ. Safe. 2010, 73, (7), 1658-1665. 27. Gong, J.; Ran, Y.; Chen, D. Y.; Yang, Y.; Ma, X. X. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China. Environ. Monit. Assess. 2009, 156, (1-4), 199-210. 28. Robinson, C. D.; Brown, E.; Craft, J. A.; Davies, I. M.; Moffat, C. F.; Pirie, D. et al. Effects of sewage effluent and ethynyl oestradiol upon molecular markers of oestrogenic exposure, maturation and reproductive success in the sand goby (Pomatoschistus minutus, Pallas). Aquat. Toxicol. 2003, 62, (2), 119-134. 29. Ahel, M.; McEvoy, J.; Giger, W. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in fresh-water organisms. Environ. Pollut. 1993, 79, (3), 243-248. 30. Schmitz-Afonso, I.; Loyo-Rosales, J. E.; Aviles, M. D.; Rattner, B. A.; Rice, C. P. Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopy. J. Chromatogr. A 2003, 1010, (1), 25-35. 31. Streit, B. Bioaccumulation processes in ecosystems. Experientia 1992, 48, (10), 955-970. 32. Van Gestel, C. A. M.; Otermann, K.; Canton, J. H. Relationship between water solubility, octanol water partition coefficients, and bioconcentration of organic chemicals in fish - a review. Regul. Toxicol. and Pharm. 1985, 5, (4), 422-431. 33. Nichols, J. W.; Jensen, K. M.; Tietge, J. E.; Johnson, R. D. Physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ. Toxicol. Chem. 1998, 17, (12), 2422-2434. 34. Bruner, K. A.; Fisher, S. W.; Landrum, P. F. The role of zebra mussel, Dreissena-polymorpha, in contaminant cycling. 1. The effect of body-size and lipid-content on the bioconcentration of PCBs and PAHs. J. Gt. Lakes Res. 1994, 20, (4), 725-734. 35. Luoma, S. N. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems? J. Exp. Mar. Biol. Ecol. 1996, 200, (1-2), 29-55. 36. Nawaz, S.; Kirk, K. L. Temperature effects on bioconcentration of DDE by Daphnia. Freshw. Biol. 1996, 35, (1), 173-178. 37. Al-Ansari, A. M.; Saleem, A.; Kimpe, L. E.; Sherry, J. P.; McMaster, M. E.; Trudeau, V. L. et al. Bioaccumulation of the pharmaceutical 17 alpha-ethinylestradiol in shorthead redhorse suckers (Moxostoma macrolepidotum) from the St. Clair River, Canada. Environ. Pollut. 2010, 158, (8), 2566-2571. 38. Ying, G. G.; Williams, B.; Kookana, R. Environmental fate of alkylphenols and alkylphenol ethoxylates - a review. Environ. Int. 2002, 28, (3), 215-226. 39. Spehar, R. L.; Brooke, L. T.; Markee, T. P.; Kahl, M. D. Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms. Environ. Toxicol. Chem. 2010, 29, (9), 2104-2111. 40. Takamatsu, M.; Goto, M.; Abe, Y. Bioconcentration of 4-n-nonylphenol in the common carp (Cyprinus carpio). Fresen. Environ. Bull. 2009, 18, (8), 1503-1506. 41. Lee, H. C.; Soyano, K.; Ishimatsu, A.; Nagae, M.; Kohra, S.; Ishibashi, Y. et al. Bisphenol A and nonylphenol bioconcentration in spotted halibut Varaspar variegates. Fish. Sci. 2004, 70, (1), 192-194. 42. Escher, B. I.; Cowan-Ellsberry, C. E.; Dyer, S.; Embry, M. R.; Erhardt, S.; Halder, M. et al. Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. Chem. Res. Toxicol. 2011, 24, (7), 1134-1143. 43. Cravedi, J. P.; Boudry, G.; Baradat, M.; Rao, D.; Debrauwer, L. Metabolic fate of 2,4-dichloroaniline, prochloraz and nonylphenol diethoxylate in rainbow trout: a comparative in vivo/in vitro approach. Aquat. Toxicol. 2001, 53, (3-4), 159-172. 44. Thibaut, R.; Debrauwer, L.; Rao, D.; Cravedi, J. P. Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Sci. Total Environ. 1999, 233, (1-3), 193-200. 45. Smith, M. D.; Hill, E. M. Uptake and metabolism of technical nonylphenol and its brominated analogues in the roach (Rutilus rutilus). Aquat. Toxicol. 2004, 69, (4), 359-369. 46. Arukwe, A.; Thibaut, R.; Ingebrigtsen, K.; Celius, T.; Goksoyr, A.; Cravedi, J. P. In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquat. Toxicol. 2000, 49, (4), 289-304. 47. Cousins, I. T.; Staples, C. A.; Klecka, G. M.; Mackay, D. A multimedia assessment of the environmental fate of bisphenol A. Hum. Ecol. Risk Assess. 2002, 8, (5), 1107-1135. 48. Lindholst, C.; Wynne, P. M.; Marriott, P.; Pedersen, S. N.; Bjerregaard, P. Metabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) in relation to estrogenic response. Comp. Biochem. Phys. C 2003, 135, (2), 169-177. 49. Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D. Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements. Chemosphere 2002, 49, (1), 97-103. 50. Liu, J. L.; Wang, R. M.; Huang, B.; Lin, C.; Wang, Y.; Pan, X. J. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ. Pollut. 2011, 159, (10), 2815-2822. 51. Pacakova, V.; Loukotkova, L.; Bosakova, Z.; Stulik, K. Analysis for estrogens as environmental pollutants - A review. J. Sep. Sci. 2009, 32, (5-6), 867-882. 52. Chen, C. Y.; Wen, T. Y.; Wang, G. S.; Cheng, H. W.; Lin, Y. H.; Lien, G. W. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Sci. Total Environ. 2007, 378, (3), 352-365. 53. Lien, G. W.; Chen, C. Y.; Wang, G. S. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for determining estrogenic chemicals in water by liquid chromatography tandem mass spectrometry with chemical derivatizations. J. Chromatogr. A 2009, 1216, (6), 956-966. 54. Vincent, M. D.; Sneddon, J. Nonylphenol: An overview and its determination in oysters and wastewaters and preliminary degradation results from laboratory experiments. Microchem J. 2009, 92, (1), 112-118. 55. Petrovic, M.; Barcelo, D. Review of advanced sample preparation methods for the determination of alkylphenol ethoxylates and their degradation products in solid environmental matrices. Chromatographia 2002, 56, (9-10), 535-544. 56. Zhao, M.; van der Wielen, F.; de Voogt, P. Optimization of a matrix solid-phase dispersion method with sequential clean-up for the determination of alkylphenol ethoxylates in biological tissues. J. Chromatogr. A 1999, 837, (1-2), 129-138. 57. Rubert, J.; Soler, C.; Manes, J. Optimization of Matrix Solid-Phase Dispersion method for simultaneous extraction of aflatoxins and OTA in cereals and its application to commercial samples. Talanta 2010, 82, (2), 567-574. 58. Shao, B.; Han, H.; Tu, X. M.; Huang, L. Analysis of alkylphenol and bisphenol A in eggs and milk by matrix solid phase dispersion extraction and liquid chromatography with tandem mass spectrometry. J. Chromatogr. B 2007, 850, (1-2), 412-416. 59. Stanley, K.; Simonich, S. M.; Bradford, D.; Davidson, C.; Tallent-Halsell, N. Comparison of pressurized liquid extraction and matrix solid-phase dispersion for the measurement of semivolatile organic compound accumulation in tadpoles. Environ. Toxicol. Chem. 2009, 28, (10), 2038-2043. 60. Garcia-Lopez, M.; Canosa, P.; Rodriguez, I. Trends and recent applications of matrix solid-phase dispersion. Anal. Bioanal. Chem. 2008, 391, (3), 963-974. 61. de Alda, M. J. L.; Diaz-Cruz, S.; Petrovic, M.; Barcelo, D. Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment. J. Chromatogr. A 2003, 1000, (1-2), 503-526. 62. Garcinuno, R. M.; Ramos, L.; Fernandez-Hernando, P.; Camara, C. Optimization of a matrix solid-phase dispersion method with subsequent clean-up for the determination of ethylene bisdithiocarbamate residues in almond samples. J. Chromatogr. A 2004, 1041, (1-2), 35-41. 63. Arditsoglou, A.; Voutsa, D. Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ. Sci. Pollut. R. 2008, 15, (3), 228-236. 64. Navarro, P.; Bustamante, J.; Vallejo, A.; Prieto, A.; Usobiaga, A.; Arrasate, S. et al. Determination of alkylphenols and 17 beta-estradiol in fish homogenate. Extraction and clean-up strategies. J. Chromatogr. A 2010, 1217, (38), 5890-5895. 65. Mullett, W. M. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis. J. Biochem. Bioph. Meth. 2007, 70, (2), 263-273. 66. Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed. Chromatogr. 2011, 25, (1-2), 199-217. 67. Rodriguez-Gonzalo, E.; Garcia-Gomez, D.; Carabias-Martinez, R. A confirmatory method for the determination of phenolic endocrine disruptors in honey using restricted-access material-liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 398, (3), 1239-1247. 68. Rao, R. N.; Shinde, D. D. Two-dimensional LC-MS/MS determination of antiretroviral drugs in rat serum and urine. J. Pharmaceut. Biomed. 2009, 50, (5), 994-999. 69. Gallart-Ayala, H.; Moyano, E.; Galceran, M. T. Recent advances in mass spectrometry analysis of phenolic endocrine disruptors and related compounds. Mass Spectrom. Rev. 2010, 29, (5), 776-805. 70. Kortz, L.; Helmschrodt, C.; Ceglarek, U. Fast liquid chromatography combined with mass spectrometry for the analysis of metabolites and proteins in human body fluids. Anal. Bioanal. Chem. 2011, 399, (8), 2635-2644. 71. Kalili, K. M.; de Villiers, A. Recent developments in the HPLC separation of phenolic compounds. J. Sep. Sci. 2011, 34, (8), 854-876. 72. Novakova, L.; Vlckova, H. A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation. Anal. Chim. Acta 2009, 656, (1-2), 8-35. 73. Sinotech Engineering Consultents. In Planning of river environment management for the Tanshui River. Water Resource Agency, Ministry of Economic Affairs, Executive Yuan, Taiwan: New Taipei, 2008; pp 41. 74. Liu, F. K.; Chang, Y. C.; Chen, R. H.; Wu, C. H.; Tsai, H. C.; Kao, S. Y. In Tilapia 168. Fisheries Research Institute, Council of Agriculture, Executive Yuan, Taiwan: Keelung, 2008; pp 3-24. 75. Bhujel, R. C.; Little, D. C.; Hossain, A. Reproductive performance and the growth of pre-stunted and normal Nile tilapia (Oreochromis niloticus) broodfish at varying feeding rates. Aquaculture 2007, 273, (1), 71-79. 76. Takagi, Y. Effects of starvation and subsequent refeeding on formation and resorption of acellular bone in tilapia, Oreochromis niloticus. Zool. Sci. 2001, 18, (5), 623-629. 77. Luo, Z.; Tan, X. Y.; Liu, X. J.; Wen, H. Effect of dietary betaine levels on growth performance and hepatic intermediary metabolism of GIFT strain of Nile tilapia Oreochromis niloticus reared in freshwater. Aquac. Nutr. 2011, 17, (4), 361-367. 78. Figueiredo-Fernandes, A.; Fontainhas-Fernandes, A.; Rocha, E.; Reis-Henriques, M. A. The effect of paraquat on hepatic EROD activity, liver, and gonadal histology in males and females of Nile tilapia, Oreochromis niloticus, exposed at different temperatures. Arch. Environ. Contam. Toxicol. 2006, 51, (4), 626-632. 79. Baroiller, J. F.; D'Cotta, H.; Bezault, E.; Wessels, S.; Hoerstgen-Schwark, G. Tilapia sex determination: Where temperature and genetics meet. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2009, 153, (1), 30-38. 80. Liao, I. C.; Chao, N. H. Developments in aquaculture biotechnology in Taiwan. J. Mar. Biotechnol. 1997, 5, (1), 16-23. 81. Kollipara, S.; Bende, G.; Agarwal, N.; Varshney, B.; Paliwal, J. International guidelines for bioanalytical method validation: a comparison and discussion on current scenario. Chromatographia 2011, 73, (3-4), 201-217. 82. Walorczyk, S.; Drozdzynski, D.; Gnusowski, B. Multiresidue determination of 160 pesticides in wines employing mixed-mode dispersive-solid phase extraction and gas chromatography-tandem mass spectrometry. Talanta 2011, 85, (4), 1856-1870. 83. Zhang, K.; Wong, J. W.; Yang, P.; Tech, K.; DiBenedetto, A. L.; Lee, N. S. et al. Multiresidue pesticide analysis of agricultural commodities using acetonitrile salt-out extraction, dispersive solid-phase sample clean-up, and high-performance liquid chromatography-tandem mass spectrometry. J. Agr. Food Chem. 2011, 59, (14), 7636-7646. 84. Hernandez, F.; Ibanez, M.; Sancho, J. V.; Pozo, O. J. Comparison of different mass spectrometric techniques combined with liquid chromatography for confirmation of pesticides in environmental water based on the use of identification points. Anal. Chem. 2004, 76, (15), 4349-4357. 85. Chang, Y. C.; Chen, W. L.; Bai, F. Y.; Chen, P. C.; Wang, G. S.; Chen, C. Y. Determination of perfluorinated chemicals in food and drinking water using high-flow solid-phase extraction and ultra-high performance liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, (3), 1315-1325. 86. Zhang, C. Basics of Environmental Sampling and Analysis. In Fundamentals of Environmental Sampling and Analysis; John Wiley & Sons, Inc.: Hoboken, 2007; pp 28-29. 87. Thorpe, K. L.; Cummings, R. I.; Hutchinson, T. H.; Scholze, M.; Brighty, G.; Sumpter, J. P. et al. Relative potencies and combination effects of steroidal estrogens in fish. Environ. Sci. Technol. 2003, 37, (6), 1142-1149. 88. Metcalfe, C. D.; Metcalfe, T. L.; Kiparissis, Y.; Koenig, B. G.; Khan, C.; Hughes, R. J. et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 2001, 20, (2), 297-308. 89. Environment Canada, Health Canada. In Priority substances list assessment report - nonylphenol and its ethoxylates. 2001; pp 33. http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-lsp2/nonylphenol/index-eng.php. Access date: 2010/07/12 90. Kopecka, J.; Pempkowiak, J. Temporal and spatial variations of selected biomarker activities in flounder (Platichthys flesus) collected in the Baltic proper. Ecotox. Environ. Safe. 2008, 70, (3), 379-391. 91. Loos, R.; Wollgast, J.; Huber, T.; Hanke, G. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal. Bioanal. Chem. 2007, 387, (4), 1469-1478. 92. Loyo-Rosales, J. E.; Schmitz-Afonso, I.; Rice, C. P.; Torrents, A. Analysis of octyl- and nonylphenol and their ethoxylates in water and sediments by liquid chromatography/tandem mass spectrometry. Anal. Chem. 2003, 75, (18), 4811-4817. 93. Bos, S. J.; van Leeuwen, S. M.; Karst, U. From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal. Bioanal. Chem. 2006, 384, (1), 85-99. 94. Shao, B.; Han, H.; Hu, J. Y.; Zhao, J.; Wu, G. H.; Xue, Y. et al. Determination of alkylphenol and bisphenol A in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Chim. Acta 2005, 530, (2), 245-252. 95. Di Carro, M.; Scapolla, C.; Liscio, C.; Magi, E. Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters. Anal. Bioanal. Chem. 2010, 398, (2), 1025-1034. 96. Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodriguez, J. J. Determination of alkylphenol polyethoxylates, bisphenol-A, 17 alpha-ethynylestradiol and 17 beta-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS. J. Hazard. Mater. 2010, 183, (1-3), 701-711. 97. Smith, E.; Ridgway, I.; Coffey, M. The determination of alkylphenols in aqueous samples from the Forth Estuary by SPE-HPLC-fluorescence. J. Environ. Monitor. 2001, 3, (6), 616-620. 98. Sibali, L. L.; Okwonkwo, J. O.; McCrindle, R. I. Levels of selected alkylphenol ethoxylates (APEs) in water and sediment samples from the Jukskei River catchment area in Gauteng, South Africa. Water SA 2010, 36, (3), 229-238. 99. Chen, F.; Ying, G. G.; Yang, J. F.; Zhao, J. L.; Wang, L. Rapid resolution liquid chromatography-tandem mass spectrometry method for the determination of endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) in wastewater irrigated soils. J. Environ. Sci. Heal. B 2010, 45, (7), 682-693. 100. Robinson, B. J.; Hui, J. P. M.; Soo, E. C.; Hellou, J. Estrogenic compounds in seawater and sediment from Halifax Harbour, Nova Scotia, Canada. Environ. Toxicol. Chem 2009, 28, (1), 18-25. 101. Brix, R.; Postigo, C.; Gonzalez, S.; Villagrasa, M.; Navarro, A.; Kuster, M. et al. Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants. Anal. Bioanal. Chem. 2010, 396, (3), 1301-1309. 102. Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, (10), 2149-2173. 103. Ahel, M.; Schaffner, C.; Giger, W. Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment .3. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res. 1996, 30, (1), 37-46. 104. Maguire, R. J. Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Water Qual. Res. J. Can. 1999, 34, (1), 37-78. 105. Loyo-Rosales, J. E.; Rice, C. P.; Torrents, A. Fate of octyl- and nonylphenol ethoxylates and some carboxylated derivatives in three American wastewater treatment plants. Environ. Sci. Technol. 2007, 41, (19), 6815-6821. 106. Arnot, J. A.; Gobas, F. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, (4), 257-297. 107. Li, M. H.; Wang, Z. R. Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata). Environ. Toxicol. 2005, 20, (1), 53-59. 108. Salierno, J. D.; Kane, A. S. 17 alpha-ethinylestradiol alters reproductive behaviors, circulating hormones, and sexual morphology in male fathead minnows (pimephales promelas). Environ. Toxicol. Chem. 2009, 28, (5), 953-961. 109. Hernandez, M. D.; Egea, M. A.; Rueda, F. M.; Martinez, F. J.; Garcia, B. G. Seasonal condition and body composition changes in sharpsnout seabream (Diplodus puntazzo) raised in captivity. Aquaculture 2003, 220, (1-4), 569-580. 110. Klein, R.; Bartel, M.; He, X. H.; Muller, J.; Quack, M. Is there a linkage between bioaccumulation and the effects of alkylphenols on male breams (Abramis brama)? Environ. Res. 2005, 98, (1), 55-63. 111. Lye, C. M.; Frid, C. L. J.; Gill, M. E.; McCormick, D. Abnormalities in the reproductive health of flounder Platichthys flesus exposed to effluent from a sewage treatment works. Mar. Pollut. Bull. 1997, 34, (1), 34-41. 112. van der Oost, R.; Beyer, J.; Vermeulen, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 2003, 13, (2), 57-149. 113. Kloeppersams, P. J.; Stegeman, J. J. Effects of temperature-acclimation on the expression of hepatic cytochrome-p4501a messenger-rna and protein in the fish Fundulus-Heteroclitus. Arch. Biochem. Biophys. 1992, 299, (1), 38-46. 114. Orn, S.; Andersson, P. L.; Forlin, L.; Tysklind, M.; Norrgren, L. The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish (Danio rerio). Arch. Environ. Contam. Toxicol. 1998, 35, (1), 52-57. 115. Dogan, D.; Can, C. Endocrine disruption and altered biochemical indices in male Oncorhynchus mykiss in response to dimethoate. Pest. Biochem. Physiol. 2011, 99, (2), 157-161. 116. Leonardi, M. O.; Puchi, M.; Bustos, P.; Romo, X.; Morin, V. Vitellogenin induction and reproductive status in wild Chilean flounder paralichthys adspersus (Steindachner, 1867) as biomarkers of endocrine disruption along the marine coast of the South Pacific. Arch. Environ. Contam. Toxicol. 2012, 62, (2), 314-322. 117. Andersson, C.; Lundstedt-Enkel, K.; Katsiadaki, I.; Holt, W. V.; Van Look, K. J. W.; Orberg, J. A chemometrical approach to study interactions between ethynylestradiol and an AhR-agonist in stickleback (Gasterosteus aculeatus). J. Chemometr. 2010, 24, (11-12), 768-778. 118. Wang, L. H.; Tsai, C. L. Effects of temperature on the deformity and sex differentiation of tilapia, Oreochromis mossambicus. J. Exp. Zool. 2000, 286, (5), 534-537. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64975 | - |
| dc.description.abstract | 本研究針對河水、底泥與生物體中之辛基酚(4-tert-octylphenol)、壬基酚4-nonylphenol)、壬基酚單乙氧烯乙酸(nonylphenoxy acetic acid)、壬基酚單乙氧烯醇(nonylphenol monoethoxylate)、壬基酚雙乙氧烯醇(nonylphenol diethoxylate)、雌素酮(estrone)、動情激素(17β-estradiol)、雌素醇(estriol)、乙炔動情激素(17α-ethinyl estradiol)與雙酚A(bisphenol A)等雌激性化合物,發展並驗證一利用極致液相層析�串聯式質譜儀(ultra-high performance liquid chromatography/tandem mass spectrometry, UHPLC/MS/MS)搭配同位素稀釋技術定量之分析方法。河水樣本以圓盤式自動固相萃取設備進行前處理。底泥與生物樣本以基質固相散布法萃取,以C8矽膠為吸附劑,甲醇與丙酮沖提液通過氧化鋁萃取匣進行樣本淨化。本研究亦比較電噴灑游離法(electrospray ionization, ESI)與大氣壓光游離法(atmospheric pressure photoionization, APPI)所產生之質譜訊號強度。層析以極致液相層析C18管柱分離待測物,壬基酚乙氧烯醇之水相為10-mM醋酸銨水溶液,其餘待測物之水相為10-mM甲基嗎啡碄水溶液,有機相為甲醇。利用限制性接觸物質(restricted access material)所進行之二維液相層析之線上樣本淨化效率亦與酸性氧化鋁作一比較。
相較大氣壓光游離法,電噴灑游離法可適用於所有待測物。雖然對兩種壬基酚乙氧烯醇與壬基酚單乙氧烯乙酸而言,大氣壓光游離法未能提供良好訊號,然而其在類固醇類雌激素與酚類產生的訊號為電噴灑游離法之1.0-2.4倍。極致液相層析將層析時間縮短至10分鐘內(包括管柱再平衡時間)。圓盤式自動固相萃取與基質固相散布法大幅改進了樣本前處理效率;地表水的前處理回收率除烷基酚類化合物低於30%,其餘介於60%至91%,底泥、魚與蛤蠣的前處理回收率分別為51-101%、36-109%與30-111%。生物樣本須經氧化鋁淨化,較二維液相層析能有效減低基質效應的影響。地表水中待測物偵測極限為0.81 ng/L至89.9 ng/L,底泥與生物體則為數十pg/g(濕重)至低ng/g(濕重)。此方法具有良好準確度與再現性,三種測試添加濃度之定量偏差與相對標準偏差均小於20%。 此分析方法並應用於淡水河河水、底泥與吳郭魚組織中雌激性化合物調查。每1.5個月採集樣本,連續執行9個月,共採樣6次,取得66個河水、66個底泥及114隻魚體樣本,以評估此類化合物在底泥和魚體內之分布與累積情形。 所有河水樣本中均測得烷基酚類化合物與雙酚A,以雙酚A與壬基酚濃度最高,依序為508 ± 634 ng/L與491 ± 570 ng/L (n = 66)。淡水河中的雙酚A平均濃度(921 ± 635 ng/L,n = 18)為基隆河(392 ± 613 ng/L,n = 48)的兩倍以上。河水中待測物濃度的空間分布情形可能與下游的污染及未經處理的生活污水排放有關。底泥中以壬基酚濃度最高(770 ± 602 ng/g(濕重),n = 66),其中尤以在污水處理廠下游最近的採樣點測得之濃度最高(1,701 ± 1,374 ng/g(濕重),n = 6),顯示壬基酚可長期累積於底泥。 壬基酚是魚體組織中的主要污染物,肌肉中濃度為199 ± 133 ng/g(濕重)(n = 114);其生物累積係數(bioaccumulation factor)亦為所有待測物中最高者(肌肉生物累積係數967 ± 903,n = 114)。雙酚A雖然在水體中易降解且在某些魚種中清除效率高,在魚體肌肉中測得最高濃度仍達334 ng/g(濕重),且其生物累積係數值得關注(肌肉生物累積係數246 ± 801,n = 114)。肌肉中壬基酚乙氧烯醇及外源性動情激素當量濃度與該採樣點河水中之濃度具顯著正相關性。魚體器官中的雌激性化合物濃度高於肌肉中的濃度,且壬基酚、壬基酚乙氧烯醇與雙酚A的生物累積係數呈現相同趨勢,亦即生殖腺>肝臟>肌肉,其中壬基酚在肝臟與生殖腺之生物累積係數大於5,000(依序為9,576 ± 15,048與 27,287 ± 49,587),可能具有生物蓄積性。肝臟形態指標值低下情形(0.16 ± 0.10,n = 114)與河水、肌肉及肝臟中的雌激性化合物濃度顯著相關,顯示雌激性化合物經由河水與攝食進入吳郭魚體內,於標的器官濃縮累積並影響內分泌系統。器官中累積的高濃度此類物質亦可能導致族群性別比偏差(雌雄比為1.92)。這些化合物與其它新興污染物交互作用下對環境生態之進一步危害,則有待未來研究深入調查。 | zh_TW |
| dc.description.abstract | This study developed and validated a method for measuring ten feminizing chemicals 4-tert-octylphenol, 4-nonylphenol (NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), estrone, 17β-estradiol, estriol, 17α-ethinyl estradiol and bisphenol A (BPA) in river water, sediment, and tissues using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) and isotope-dilution techniques. Analytes in water samples were extracted using disk-type automated solid-phase extraction (SPE). Solid samples of sediment, fish, and clams were treated with matrix solid-phase dispersion (MSPD) using C8 adsorbent; eluents of methanol and acetone were directly passed through following alumina cartridges for cleanup. The signal intensities of analytes on electrospray ionization (ESI) were compared with that of atmospheric pressure photoionization (APPI). The analytes were separated on a UHPLC C18 column with aqueous 10-mM ammonium acetate for NPEOs and aqueous 10-mM N-methylmorpholine for the other compounds. The organic mobile phase was methanol. Two-dimensional liquid chromatography (2-D LC) with a C4 restricted access material column was evaluated for on-line cleanup.
ESI provided satisfactory response for all of the analytes. Although APPI provided better signal intensities for the steroid estrogens (1.0-2.4 times higher) and the phenols (3.2-4.4 times higher) than ESI, it did not offer good responses on NP1EO, NP2EO and NP1EC. UHPLC shortened chromatographic time to less than 10 min (including re-equilibration). Disk-type automated SPE and MSPD dramatically increased the throughput of sample preparation. The extraction efficiency of most analytes on surface water ranged from 60% to 91%, but that of alkylphenolic compounds were lower than 30%. The extraction efficiency of MSPD on sediment, fish, and clams was 51-101%, 36-109%, and 30-111%, respectively. Acidic alumina cleanup was essential for the analysis of the tissue samples, and reduced matrix effects more significantly than 2-D LC on-line cleanup. The limits of detection (LODs) in water ranged from 0.81 ng/L to 89.9 ng/L. The LODs in sediment and tissues ranged from tens of pg/g wet weight (w.w.) to only a few ng/g w.w. This method proved to be accurate and reproducible, as both quantitative biases and relative deviations remained smaller than 20% at three spiked levels. The method was applied to investigate the distribution of feminizing chemicals in river water, sediment and fish (Oreochromis niloticus) in the Dan-Shui River, Taipei, Taiwan. Sampling was conducted every one and a half months for nine months, in the total of six times. Sixty six water samples, 66 sediment ones and 114 fish were collected. The concentrations in fish tissues were measured to estimate the distribution and the bioaccumulation of these chemicals within fish. Alkylphenolic compounds and BPA were detected in all of the water samples. BPA and NP were the most abundant analytes in river water (508 ± 634 ng/L and 491 ± 570 ng/L, respectively, n = 66). The average concentrations of BPA in the main stream of the Dan-Shui River (921 ± 635 ng/L, n = 18) was more than twice higher than that in the tributary (353 ± 567 ng/L, n = 48). The spatial variation of concentrations in water may be associated with the downstream pollution and the emission of untreated municipal wastewater. NP was the most abundant compound in sediment (770 ± 602 ng/g w.w., n = 66) and the highest concentration was detected at the closest downstream site from a wastewater treatment plant (1,701 ± 1,374 ng/g w.w., n = 6), indicating long-term accumulation of NP in sediment. NP was also the predominant compound in fish tissues (199 ± 133 ng/g w.w. in muscle, n = 114) and had the highest bioaccumulation factor (BAF, 967 ± 903 in muscle, n = 114) among the analytes. Although BPA is easy to degrade in water and is eliminated rapidly in some fish species, up to 334 ng/g w.w. was detected in fish muscle and considerable BAFs (246 ± 801 in muscle, n = 114) were found. Concentrations of feminizing chemicals in fish organs were found to be higher than that in muscle and the BAFs of NP, nonylphenol ethoxylates and BPA showed similar trends in organs: gonad > liver > muscle. The high BAFs of NP in liver and in gonad (9,576 ± 15,048 and 27,287 ± 49,587, respectively, n = 114) indicated possible bioaccumulation. Low hepatosomatic indices (0.16 ± 0.10, n = 114) were significantly correlated with the concentrations of feminizing chemicals in river water, in fish muscle and in liver, indicating that feminizing compounds entered tilapia via river water and ingestion, concentrated and accumulated in the target organ, and affected the endocrine system. The accumulation of these compounds in the organs may attribute to the skewed sex ratio of fish (female:male = 1.92). Future studies are desired to investigate the impacts of the interaction between these analytes and other emerging contaminants on biologial environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:11:18Z (GMT). No. of bitstreams: 1 ntu-101-D95844001-1.pdf: 3136965 bytes, checksum: 56b2e650ee0c87997215f9684f9d5ecb (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 iii Abstract vii Contents xi List of Figures xiii List of Tables xiv Chapter 1. Introduction 1 Chapter 2. Methods 9 2.1. Reagents 9 2.2. Sample Collection and Preparation 10 2.3. Liquid Chromatography 13 2.4. Tandem Mass Spectrometry 15 2.5. Evaluation of Extraction Efficiency, Matrix Effects and Method Validation 16 2.6. Quality Assurance, Quality Control and Data Analysis 17 Chapter 3. Results and Discussion 23 3.1. Methodology 23 3.1.1. Performance of ESI and APPI 23 3.1.2. Effects of Mobile Phase Compositions on Signal Intensities 24 3.1.3. Optimization of Sample Preparation 25 3.1.4. Matrix Effects 28 3.1.5. Background Levels and Method Validation 30 3.2. Feminizing Chemicals in the Dan-Shui River 32 3.2.1. Concentrations in River Water and in Sediment 32 3.2.2. Concentrations in Fish Tissues 35 3.2.3. Reproductive Effects on Fish 37 Chapter 4. Conclusions 43 Acknowledgements 45 References 47 Figures 69 Tables 79 Appendices 119 | |
| dc.language.iso | en | |
| dc.subject | 魚體器官 | zh_TW |
| dc.subject | 內分泌干擾物質 | zh_TW |
| dc.subject | 圓盤式自動固相萃取 | zh_TW |
| dc.subject | 基質固相散布 | zh_TW |
| dc.subject | 生物累積 | zh_TW |
| dc.subject | fish organs | en |
| dc.subject | endocrine disrupting chemicals | en |
| dc.subject | disk-type automated solid-phase extraction | en |
| dc.subject | matrix solid-phase dispersion | en |
| dc.subject | bioaccumulation factor | en |
| dc.title | 雌激性化合物在水環境中之流布-方法開發與應用 | zh_TW |
| dc.title | Occurrence and Fate of Feminizing Chemicals in Aquatic Environment – Method Development and Data Interpretation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王根樹,陳叡瑜,丁望賢,周晉澄,陳美蓮 | |
| dc.subject.keyword | 內分泌干擾物質,圓盤式自動固相萃取,基質固相散布,生物累積,魚體器官, | zh_TW |
| dc.subject.keyword | endocrine disrupting chemicals,disk-type automated solid-phase extraction,matrix solid-phase dispersion,bioaccumulation factor,fish organs, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
