請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64972
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 石百達 | |
dc.contributor.author | Min-Syuan Tsai | en |
dc.contributor.author | 蔡旻軒 | zh_TW |
dc.date.accessioned | 2021-06-16T23:11:12Z | - |
dc.date.available | 2025-03-13 | |
dc.date.copyright | 2020-03-13 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-24 | |
dc.identifier.citation | Bakshi G., Kapadia N., and Madan D. (2003). Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options. The Review of Financial Studies, 16(1), 101-143.
Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. The Journal of Business, 45(3), 444-455. Buss A. and Vilkov G. (2012). Measuring Equity Risk with Option-implied Correlations. The Review of Financial Studies, 25(10), 3113-3140. Campbell R., Koedijk K., and Kofman P. (2002). Increasing correlation in bear markets. Financial Analysts Journal, 58(1), 87-94. Chang B.-Y., Christoffersen P., Jacobs K., and Vainberg G. (2012). Option-Implied Measures of Equity Risk. Review of Finance, 16(2), 385-428. Chesnay F. and Jondeau E. (2001), Does Correlation Between Stock Returns Really Increase During Turbulent Periods?. Economic Notes, 30, 53-80. Christoffersen, Peter F., Jacobs K., and Vaniberg G. (2007). Forward-looking betas. Working paper, McGill University. Delen D., Kuzey C., and Uyar A. (2013). Measuring firm performance using fincancial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970-3983. Heiberger R. H. (2014). Stock network stability in times of crisis. Physica A, 393, 376-381. Huang W., Nakamori Y., and Wang, S.-Y (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32, 2513-2522. Sun J. and Li H. (2008). Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 21(1), 1-5. Sun J., Li H., Huang Q.-H., and He K.-Y. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41-56. Leung M. T., Daouk H., and Chen A. S. (2000). Forecasting stock indices: a comparison of classification and level estimation models. International Journal of Forecasting, 16, 173-190. Lintner, J. (1965). SECURITY PRICES, RISK, AND MAXIMAL GAINS FROM DIVERSIFICATION. The Journal of Finance, 20(4), 587-615. Longin F. and B. Solnik (2001). Extreme Correlatin of International Equity Markets. The Journal of Finance, 56(2), 649-676. Patel J., Shah S., Thakkar P., and Kotecha K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172. Pesaran M. H. and Timmermann A. (1994). Forecasting stock returns an examination of stock market trading in the presence of transaction costs. Journal of Forecasting. 13(4), 335-367. Sharpe W. F. (1964). CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK*. The Journal of Finance, 19(3), 425-442. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64972 | - |
dc.description.abstract | 本研究運用選擇權隱含之 Beta 值,探討市場危機是否具可預測性。本研究 搜集了 1996 年至 2016 年 S&P 500 股價指數與其成分股週資料,以 S&P 500 股 價指數月報酬率之風險值定義市場危機,並由選擇權隱含之 Beta 值定義三項代 理變數,使用決策樹模型對市場危機進行預測。實證結果發現,在相對寬鬆之 風險值下,決策樹模型較能夠正確預測市場危機以及 S&P 500 股價指數下跌之 趨勢。 | zh_TW |
dc.description.abstract | This study investigates whether market crashes can be predicted using option- implied betas. Three proxy variables of option-implied betas as features are used to predict market crisis event which is defined using Value at Risk(VaR). The thesis empirical results based upon 1996-2016 S&P 500 data show that market crisis event and S&P 500 index movement could be predicted more accurately when using VaR with a lower confidence level. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:11:12Z (GMT). No. of bitstreams: 1 ntu-109-R06723056-1.pdf: 1770488 bytes, checksum: 1081f8b1b8f69b760956b39a88b693cc (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 .......................... #
摘要 .......................... ii Abstract .......................... iii 第一章 緒論 .......................... 7 1.1 研究動機與目的 .......................... 7 1.2 研究流程 .......................... 7 第二章 文獻探討 .......................... 9 第三章 研究樣本與研究方法 .......................... 11 3.1 變數介紹 .......................... 11 3.1.1 特徵 .......................... 11 3.1.2 目標變數 .......................... 13 3.2 資料來源與樣本處理 .......................... 13 3.3 敘述性統計 .......................... 14 3.4 研究方法 .......................... 15 第四章 實證結果與分析 .......................... 18 第五章 結論. .......................... 22 參考文獻 .......................... 23 | |
dc.language.iso | zh-TW | |
dc.title | 以選擇權隱含之 Beta 值預測市場危機 | zh_TW |
dc.title | Forecasting Market Crashes Using Option-implied Betas | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 莊文議 | |
dc.contributor.oralexamcommittee | 盧佳琪 | |
dc.subject.keyword | 市場危機,決策樹,選擇權隱含貝它值, | zh_TW |
dc.subject.keyword | Stock Market Crashes,Decision Tree,Option-implied Beta, | en |
dc.relation.page | 24 | |
dc.identifier.doi | 10.6342/NTU202000574 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-24 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
顯示於系所單位: | 財務金融學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。