Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64969Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 葉顯椏(Shean-Ya Yeh) | |
| dc.contributor.author | Feng-Chen Chang | en |
| dc.contributor.author | 張鳳貞 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:10:57Z | - |
| dc.date.available | 2015-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | References
Andrade, H.A. (2011) Standardized Catch Rates of Albacore (Thunnus alalunga) Caught by Brazilian Fleet (1978-2010). ICCAT SCRS/2011/124 Ayers, D. (2003). Standardized CPUE analysis for the northern gemfish (Rexea solandri) fisheries in SKI 1 and SKI 2, 1989-2002. NZ Fisheries Association Research Document No. 2003/34. Babcock, E.A. (2011). Application of a Bayesian Surplus Production Model to preliminary data for South Atlantic and Mediterranean albacore. ICCAT SCRS/2011/112 Bard, F.X. (1981). Le thon Germon (T. alalunga) de l’ocean Atlantique. These Doc. Sc. Paris., 336pp. Chang, F.C., Kao, W.Y. and Yeh, S.Y. (2011). Conversion on Sampled-CAS into CAA of South Atlantic Taiwanese Albacore Catch, Dating from 1981 to 2010, using Knife Cutting Algorithm. ICCAT SCRS/2011/118 Chang, F.C. and Yeh, S.Y. (2011). Standardized CPUE of South Atlantic albacore (Thunnus alalunga) based on Taiwanese longline catch and effort statistics dating from 1967 to 2010. ICCAT SCRS/2011/119 Collette, B.B. and Nauen, C.E. (1983). An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. In FAO SPECIES CATALOGUE, VOL.2 SCOMBRIDS OF THE WORLD. FAO Fisheries Synopsis No. 125, Volume 2. 137p. Compean-Jimenez, G. and Bard, F.X. (1983). Growth increments on dorsal spines of eastern Atlantic bluefin tuna, Thunnus thynnus, and their possible relation to 39 migration pattern. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 8: 77-86. Cooke, J.G. and Lankester, K. (1996). Consideration of statistical models for catch-effort indices for use in tuning VPAs. ICCAT Col. Vol. Sci. Pap., 45: 125-131. Erzini, K., Gonçalves, J.M.S., Bentes, L., Lino, P.G. and Ribeiro, J. (1998). Species and size selectivity in a ‘red’ sea bream longline ‘métier’ in the Algarve (southern Portugal). Aquatic Living Resources, 11: 1-11. Fletcher, R.I. (1978). On the restructuring of the Pella-Tomlinson system. Fish. Bull. 76, 515-521. Fournier, D.A., Hampton, J. and Sibert, J.R. (1998). MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci. 55: 2105-2116. Francis, R. I. C. C. (1992). Use of risk analysis to assess fishery management strategies: a case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci., 49: 922-930. Gavaris, S. (1980). Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37, 2272-2275. Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995). Bayesian data analysis. Chapman and Hall. 552 pp. Gonzalez-Garces, A. and Farina-Perez, A.C. (1983). Determining age of young albacore, Thunnus alalunga, using dorsal spines. U.S. Dep. Comer., NOAA Tech. Rep. NMFS 8: 117-122. Graham, M. (1935). Modern theory of exploiting fishery, and application to North Sea trawling. Journal du Conseil International pourl’ Exploration de la Mer 10: 264-274. Hsu, C.C. and Liu, H.C. (1992). Status of Taiwanese longline fisheries in the Atlantic. ICCAT Col. Vol. Sci. Pap. 39 (1): 258-264. ICCAT. (1996). Report of the bluefin tuna methodology session. In April 16 to 19, 1996. Spain, Madrid, pp. 28. Kerwath, S.E., Winker, H. and West, W. (2011) Standardization of the Catch per Unit Effort for Albacore (Thunnus alalunga) for the South African tuna-pole (baitboat) fleet for the time series 1999-2010. ICCAT SCRS/2011/121 Kimura, D.K. (1981). Standardized measures of relative abundance based on modelling log(c.p.u.e.), and the application to Pacific ocean perch (Sebastes alutus). J. Cons. Int. Explor. Mer. 39, 211-218. Lee, L.K. and Yeh, S.Y. (2007). Assessment of South Atlantic albacore resource based on 1959-2005 catch and effort statistics from ICCAT. ICCAT SCRS/2007/95 Legault, C.M. and Restrepo, V.R. (1999). A flexible forward age-structured assessment program. ICCAT Col. Vol. Sci. Pap., 49(2): 246-253. Leslie, R.W., Restrepo, V. and Antony, L.L. (2004). Standardized South Atlantic albacore CPUE for the South African baitboat fishery, 1985-2002. ICCAT Col. Vol. Sci. Pap. 56(4): 1504-1524. Lo, N.C., Jacobson, L.D., Squire, J.L. (1992). Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci., 49: 2515-2526. Matsumoto, T. and Uosaki, K. (2011). Standardized CPUE for South Atlantic albacore by the Japanese longline fishery based on lognormal and negative binominal models. ICCAT SCRS/2011/109 Maunder, M.N., Punt, A.E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research, 70: 140-159. McAllister, M.K., Babcock, E.A., Pikitch, E.K. and Prager, M.H. (2000). Application of a non-equilibrium generalized production model to South and North Atlantic Swordfish: combining Bayesian and demographic methods for parameter estimation. ICCAT Collective Volume of Scientific Papers 51: 1523-1551 (SCRS/99/85). McAllister, M.K., Babcock, E.A., Pikitch, E.K. and Bonfil, R. (2002). Importance sampling issues with the 1998 large coastal shark assessement. Document presented at the 2002 Shark Evaluation Workshop. McAllister, M.K., and Ianelli, J.N. (1997). Bayesian stock assessment using catch-age data and the Sampling/Importance Resampling Algorithm. Can. J. of Fish. and Aquat. Sci. 54: 284-300. McAllister, M.K. and Kirkwood, G.P. (1998). Bayesian stock assessment: a review and example application using the logistic model. ICES J. Mar. Sci. 55: 1031-1060. McAllister, M.K., Pikitch, E.K. and Babcock, E.A. (2001). Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Canadian Journal of Fisheries and Aquatic Sciences 58: 1871-1890. McAllister, M.K., Pikitch, E.K., Punt, A.E., and Hilborn, R. (1994). A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687. Nelder, J.A., Wedderburn, R.W.M. (1972). Generalised linear models. J. R. Statist. Soc. A 137, 370-384. Ortiz, M. and Arocha, F. (2004). Alternative error distribution models for standardization of catch rates of non-target species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. Fish. Res., 70:275-297. Ortiz, M. and Palma, C. (2011). Standardized southern albacore mean annual size, from fisheries size samples 1956-2010. ICCAT SCRS/2011/120 Pella, J.J. and Tomlinson, P.K. (1969). A generalized stock production model. Bull. Inter-Am. Trop. Tuna Comm. 13, 419-496. Penny, A.J. (1994). Morphometric relationships, annual catches and catch-at-size for South African caught South Atlantic albacore (Thunnus alalunga). Col. Vol. Scient. Pap. Int. Commn Conserv. Atl Tunas, 42(1): 371-382. Pons, M., Ortiz, M. and Domingo, A. (2011). Catch rates standardization of albacore tuna, Thunnus alalunga, caught by Uruguayan longline fleet (1983-2010). ICCAT SCRS/2011/114 Prager, M.H. (1994). A suite of extensions to a nonequilibrium surplus production model. Fishery Bulletin 92: 374-389. Prager, M.H. (2002). Comparison of the logistic and generalized surplus-production models applied to swordfish, Xiphias gladius, in the north Atlantic Ocean. Fisheries Research. 58:41-57. Press, W.H. et al. (1989). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press. New York. Punt, A.E. (1992). Some comments of the approaches used to assess South Atlantic albacore. ICCAT SCRS/92/171. Punt, A.E. (1994). Assessments of the stocks of Cape hakes, Merluccius spp. Off South Africa. S. Afr. J. Mar. Sci. 14: 159-186. Punt, A.E., Smith, D.C., Thomson, R.B., Haddon, M., He, X., and Lyle, J.M. (2001). Stock assessment of the blue grenadier Macruronus novaezelandiae resource off southeastern Australia. Mar. Freshw. Res. 52, 701-717. Quinn, T.J. and Deriso, R.B. (1999). Quantitative Fish Dynamics. Oxford University Press. Restrepo, V.R. and Legault, C.M. (1997). A stochastic implementation of an age-structured production model. ICCAT SCRS/97/59. Robson, D.S. (1966). Estimation of the relative fishing power of individual ships. ICNAF Res. Bull. 3, 5-14. Schaefer M.B. (1957). A study of the dynamics of the fishery for yellowfin tuna in the Eastem Tropical Pacific Ocean. Bull. Inter-Am. Trop. Tuna Comm. 2, 247-285. Wood (2006). Low rank scale invariant tensor product smooths for generalized additive mixed models. Biometrics, 62: 1025-1036. Wu, C.L. and Yeh, S.Y. (1999). CPUE standardization for South Atlantic albacore caught by Taiwanese longline fisheries, 1968-1996. ICCAT SCRS/98/156. Wu, C.L. and Yeh, S.Y. (2000). Demarcation of operating areas and fishing strategies for Taiwanese longline fisheries in South Atlantic Ocean. ICCAT SCRS/00/167. Wu, C.L. and Yeh, S.Y. (2002). Geographic distribution and area demarcation on the fisheries resource of south Atlantic albacore. ACTA Oceanogra. Taiwan. 40(1), 81-92. Yeh, S.Y. and Liu, H.C. (1988). Stock assessment of south Atlantic albacore by using production models, 1967-1986. ICCAT Rec. Doc.Sci., SCRS/88/60. Yeh, S.Y., Tsou, T.S. and Liu, H.C. (1991). Assessment of the South Atlantic albacore resource by using surplus production models, 1976-1988. ICCAT Col. Vol. Sci. Pap. XXXIV: 166-170. Yeh, S.Y., Tsou, T.S. and Liu, H.C. (1992). Assessment of the South Atlantic albacore resource by using surplus production models, 1976-1988. ICCAT Col. Vol. Sci. Pap. XXXIV(1): 265-268. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64969 | - |
| dc.description.abstract | 南大西洋台灣遠洋鮪延繩釣漁業,自1960年代中期初次作業以來,發展極為迅速;1970年代起,不但一直是南大西洋長鰭鮪資源之最大利用國,也是該長鰭鮪資源時空分布特性之主要訊息提供者。本資源自1970年代起,即受到大西洋鮪類國際漁業管理機構(ICCAT)之法訂管轄。到目前為止,曾使用過且作為本資源管理依據之評估模式有:年齡結構型餘量模式(ASPM)及變積矩陣型餘量模式(ASPIC)等兩種。本論文係依據:南大西洋台灣遠洋鮪延繩釣漁船資料(自1967至2010年間、五度方格、月別等漁獲及漁獲努力量時空分布數據)為基礎,應用:泛線性(GLM)、泛加性(GAM)、ASPM、ASPIC及貝式餘量模式(BSP)等方法,研析比較不同模式間對資源評估及管理之影響。
結果顯示:(1)漁區因子為解釋GLM總變異之最強因子;(2)表水溫(SST)因子在GLM模式下僅解釋少部份的模式變異,在GAM模式下則清楚顯示長鰭鮪好棲息於14~19 ℃ SST水域;(3)漁船現場量測體長顯示:1997~1999年間,採自Alb_34區之長鰭鮪月平均體重,顯著較重於其他年份;(4)Alb_34區1997~1999年6~10月間之月平均_SST(取自NOAA資料庫)較2002~2004年同期間亦有明顯的差異;(5)以現存成熟群之生物量(SSB2010)為基礎,若欲達成”五年內,不大於50%之危險機率,本資源之SSB將持續維持SSB/SSB2010大於1”之前景,引用:ASPM、ASPIC及BSP 等評估模式,求得之最大可捕量(TAC)分別為24,000公噸、20,000公噸及25,000公噸;(6)總觀模式參數化結構之合理性、與現階段漁業管理之適用度、未來擴充之彈性等面向綜合比較後,本研究以ASPM模式應是值得持續引用並盼能進而引入生態環境等因子,以便更深入地反映漁業資源現況與前景預測。 | zh_TW |
| dc.description.abstract | Mainly based on 1967-2010 area-time catch and effort data reported from Taiwanese vessels fishing on South Atlantic albacore, this study aimed at (1) comparing generalized linear (GLM) and generalized additive (GAM) models with/without sea surface temperature (SST) factor for obtaining a better abundance indices trend of the stock; (2) comparing the age-structured production (ASPM), a stock production model incorporating covariates (ASPIC), and Baysian surplus production (BSP) models for obtaining a precautious criteria of 50% risk at which the sustainable total allowable catch (TAC) level can be determined.
The results obtained as follows: (1) area factor appears to be the most explanatory factor to express the total variation in GLM; (2) the addition of SST factor into GLM will only add small explanatory power as compared to without SST factor, adding SST into GAM, on the other hand, does explain its concentration at 14~19℃ SST; (3) mean body weight of measured albacore in Alb_34 appeared higher in the years of 1997~1999 as compared with other years; (4) the monthly mean SST (June ~ October) in the period of 1997~1999 (years of heavy El Nino) of Alb_34 appeared to be significantly different from those of 2002~2004 based on NOAA data; (5) if the criteria of a constant TAC 'which assures that there appears a risk of smaller than 50% chance that the prospecting SSB/SSB2010 will reach the value always greater than 1 in 5-years' is proposed as such, the model-predicted TACs were: 24,000mt, 20,000mt, and 25,000mt by using ASPM, ASPIC and BSP models, respectively; (6) an overall comparison on these three models suggested the ASPM appeared to be the most promising, judged by its structural soundness of model components and managerial applicability on fishing practice, for assessing and managing the South Atlantic albacore resource. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:10:57Z (GMT). No. of bitstreams: 1 ntu-101-D93241008-1.pdf: 6338484 bytes, checksum: 2113b77135278f9fbd98c7b027fa0417 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
Chapter 1 – Introduction....................................................................................................1 1.1 National importance of the topic...........................................................................2 1.2 International importance of the topic...........................................................4 1.3 Review and comment on 'What have been done'............................................6 1.4 Significance of this study.......................................................................................7 Chapter 2 – Source of Data.............................................................................................8 2.1 Task1, Task2 and CPUE by fleet.............................................................................8 2.2 Age and growth.....................................................................................................10 2.3 CAS and CAA.......................................................................................................11 2.4 Catch Selectivity by Size/Age and by fleet...........................................................14 Chapter 3 – CPUE indicator improvement 'Methods'....................................................15 3.1 Mathematical Model express of 'GLM'...............................................................15 3.2 Mathematical Model express of 'GAM'...............................................................20 3.3 Results obtained from GLM (with/without SST)..................................................22 3.4 Results obtained from GAM (with/without SST)..................................................25 Chapter 4 – Assessment by ASPM algorithm.................................................................26 4.1 Mathematical Model express of 'ASPM'.............................................................27 4.2 Output and its implications of 'ASPM'................................................................29 Chapter 5 – Assessment by ASPIC algorithm.................................................................32 5.1 Mathematical Model express of 'ASPIC'.............................................................32 5.2 Output and its implications of 'ASPIC'................................................................36 Chapter 6 – Assessment by BAYSIAN algorithm..........................................................38 6.1 Mathematical Model express of 'BAYSIAN'......................................................38 6.2 Output and its implications of 'BAYSIAN'.........................................................42 Chapter 7 – Comparison on 'Risks' shown by various Production Models...................44 Chapter 8 – Conclusion and Discussion..........................................................................46 Reference….....................................................................................................................49 Tables…...........................................................................................................................55 Figures.............................................................................................................................70 | |
| dc.language.iso | en | |
| dc.subject | 南大西洋長鰭鮪 | zh_TW |
| dc.subject | 泛線性模式 | zh_TW |
| dc.subject | 泛加性模式 | zh_TW |
| dc.subject | 年齡結構型餘量模式 | zh_TW |
| dc.subject | 變積矩陣型餘量模式 | zh_TW |
| dc.subject | ASPM | en |
| dc.subject | GLM | en |
| dc.subject | South Atlantic albacore | en |
| dc.subject | GAM | en |
| dc.subject | ASPIC | en |
| dc.title | 南大西洋長鰭鮪資源評估模式間之比較研究 | zh_TW |
| dc.title | Comparisons on Adopted Production Models of Assessing the South Atlantic Albacore Stock | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉錫江,郭慶老,陳志遠,李梁康,劉仁銘 | |
| dc.subject.keyword | 南大西洋長鰭鮪,泛線性模式,泛加性模式,年齡結構型餘量模式,變積矩陣型餘量模式, | zh_TW |
| dc.subject.keyword | South Atlantic albacore,GLM,GAM,ASPM,ASPIC, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| Appears in Collections: | 海洋研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 6.19 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
