Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64957
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江衍偉(Yean-Woei Kiang)
dc.contributor.authorCheng-Yuan Liaoen
dc.contributor.author廖正淵zh_TW
dc.date.accessioned2021-06-16T23:10:16Z-
dc.date.available2012-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citation1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205-213 (2010).
2. J. Zhu, Z. Yu, S. Fan, Y. Cui, “Nanostructured photon management for high performance solar cells,” Materials Science and Engineering: R: Reports 70, 330-340 (2010).
3. T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95, 1527-1536 (2011).
4. B. A. Andersson, “Materials availability for large-scale thin-film photovoltaics,” Prog. Photovolt: Res. Appl. 8, 61–76 (2000).
5. R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, Norwell, Mass., 1998).
6. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
7. J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41-42, 87-99 (1996).
8. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, (Univ. New South Wales, Australia, Sydney, 1998).
9. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491–493 (1983).
10. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electr. Dev. 29, 300–305 (1982).
11. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
12. H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
13. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle- enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
14. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
15. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
16. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
17. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93, 113108 (2008).
18. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
19. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
20. T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34, 6448–6451 (1995).
21. M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
22. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. C. 61, 97–105 (2000).
23. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
24. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007).
25. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
26. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
27. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
28. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
29. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18 (3), 2682–2694 (2010).
30. L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, and M. M. Koetse, “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett. 90, 143506 (2007).
31. J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model.” Phys. Rev. B 72, 075405 (2005).
32. J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength- scale localization,” Phys. Rev. B 73, 035407 (2006).
33. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
34. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
35. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Optics Express 18 (102), A237-A245 (2010).
36. H.Y. Lin, Y. Kuo, C.Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Optics Express, Vol. 20, A104-A118 (2012).
37. M. Hack, M. Shur, “Physics of amorphous silicon alloy p–i–n solar cells, ” Journal of Applied Physics 58 (2), p. 997 (1985).
38. M. Hack and M. Shur, “Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells,” J. Appl. Phys. 54 (10), (1983).
39. A. H. M. Shousha and M. A. EL-Kosheiry, “Computer simulation of amorphous MIS solar cells,” Renew Energy 11 (4), 4 (1997).
40. P. J. McElheny, J. K. Arch, H.-S Lin, and S.J. Fonash, “Range of validity of the surface-photovoltage diffusion length measurement: A computer simulation,” J. Appl. Phys. 64 (3), 1 (1988).
41. A Fantoni , M Vieira , J Cruz , R Schwarz and R Martins, “A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell,” J Phys D 29, 3154 (1996).
42. Shockley W. and READ W. T., “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev. 87, 835 (1952).
43. S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1981)
44. D. L. Scharfetter and D. L. Gummel, “Large signal analysis of a Silicon Read diode oscillator,” IEEE Transaction on Electron Devices, ED-16, 64-77 (1969).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64957-
dc.description.abstract本文係以數值模擬方式,對一具有金屬光柵結構的非晶矽薄膜太陽能電池,在已知其內部之載子產生率的情況下,探討其內部載子傳輸現象。此太陽能電池由三部分組成,由外而內,依序是作為表面電極之氧化銦錫透明導電層、非晶矽半導體層與作為底部電極的金屬銀光柵層。本文中非晶矽半導體內的載子傳輸為一個二維的數值問題,吾人藉由Gummel迭代法來求算出一組滿足Poisson方程式以及電子與電洞之連續方程式的解。在每次迭代運算過程中,我們並非一舉求算二維區間的解,而是將二維問題近似為有限個彼此有關聯的一維問題,再利用已設計好的一維模型來進行重複性的計算,以求得二維區間的解。為了評估此太陽能電池的性能,我們亦模擬了具有相同體積的平板型參考太陽能電池。模擬結果顯示:具有光柵結構的太陽能電池之能量轉換效率確有增加,相較於對應的參考太陽能電池,最大能量轉換效率可從5.93%提升至8.24%,亦即約有39%之相對提升。zh_TW
dc.description.abstractThe carrier transport of a thin-film amorphous silicon (a-Si) solar cell with a metal grating is numerically simulated, for a given generation rate in the solar cell. The solar cell structure consists of three parts: an ITO layer as the top contact, an a-Si layer and a metal Ag grating layer as the back contact. It is a two-dimensional problem to simulate the carrier transport in the a-Si region. Using the Gummel iteration method, we get the self-consistent solutions of the electron and hole continuity equations and the Poisson equation for the entire region of a-Si. At each iteration step, we solve the two-dimensional problem by repeatedly using the related one-dimensional model. In other words, the equations are not solved simultaneously in the two-dimensional region to save the memory and computer time. The simulated results reveal that the maximum efficiency of such a solar cell is enhanced, as compared with the reference flat solar cell of the same volume of a-Si. For the maximum efficiency, it can be increased from 5.93% to 8.24%, with a relative enhancement of about 39%.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:10:16Z (GMT). No. of bitstreams: 1
ntu-101-R99941096-1.pdf: 4033238 bytes, checksum: 79aae54a5607c9b5054e97408a1fe99d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1 Introduction .........................................................................1
Chapter 2 A Thin-Film Amorphous Silicon Solar Cell with a Metal
Grating .................................................................................7
2.1 Geometry of the solar cell .............................................................7
2.2 The absorption property of the solar cell ......................................8
Chapter 3 One-Dimensional Numerical Model ................................10
3.1 Basic device equations ................................................................10
3.1.1 Poisson equation and carrier continuity equations ...........10
3.1.2 Charge distribution and recombination rate ......................11
3.1.3 Generation rate ..................................................................12
3.2 Boundary conditions ...................................................................12
3.3 Normalization factors .................................................................13
3.4 Numerical simulation ..................................................................14
3.4.1 Simulation details for Poisson equation ............................15
3.4.2 Simulation details for carrier continuity equations ...........16
3.5 Initial guesses and iteration process ...........................................17
Chapter 4 Two-Dimensional Numerical Model ................................20
4.1 Basic device equations ................................................................20
4.2 Generation rate and approximation of curved surface ................20
4.3 Boundary conditions ...................................................................21
4.4 Numerical algorithms .................................................................23
4.4.1 Simulation details for a flat solar cell ...............................23
4.4.2 Simulation details for a solar cell with a metal grating ....25
4.5 Initial guesses and iteration process ...........................................27
Chapter 5 Numerical Results .............................................................32
5.1 Numerical results for 1D model .................................................32
5.2 Numerical results for 2D model .................................................35
5.2.1 Numerical results for a flat solar cell ................................35
5.2.2 Numerical results for a solar cell with a metal grating .....37
Chapter 6 Conclusions ........................................................................60
References ...............................................................................................61
dc.language.isoen
dc.subject太陽電池zh_TW
dc.subject效率增加zh_TW
dc.subject吸收增加zh_TW
dc.subject載子傳輸zh_TW
dc.subject金屬光柵zh_TW
dc.subjectmetal gratingen
dc.subjectsolar cellen
dc.subjectabsorption enhancementen
dc.subjectcarrier transporten
dc.subjectefficiency enhancementen
dc.title含金屬光柵結構的非晶矽薄膜太陽電池中載子傳輸之模擬研究zh_TW
dc.titleNumerical Simulation on Carrier Transport in a Thin-Film Amorphous Silicon Solar Cell with a Metal Gratingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor楊志忠(Chih-Chung Yang)
dc.contributor.oralexamcommittee張宏鈞(Hung-chun Chang),吳育任(Yuh-Renn Wu)
dc.subject.keyword太陽電池,吸收增加,載子傳輸,效率增加,金屬光柵,zh_TW
dc.subject.keywordsolar cell,absorption enhancement,carrier transport,efficiency enhancement,metal grating,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved