Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德
dc.contributor.authorCheng-Fu Changen
dc.contributor.author張成甫zh_TW
dc.date.accessioned2021-06-16T23:09:49Z-
dc.date.available2012-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationAshkin, A. and J. M. Dziedzic (1987). 'Optical trapping and manipulation of viruses and bacteria.' Science 235(4795): 1517-1520.
Brierley, I., A. J. Jenner, et al. (1992). 'Mutational analysis of the 'slippery-sequence' component of a coronavirus ribosomal frameshifting signal.' J Mol Biol 227(2): 463-479.
Brierley, I., N. J. Rolley, et al. (1991). 'Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal.' J Mol Biol 220(4): 889-902.
Bustamante, C. (2008). 'In singulo biochemistry: when less is more.' Annu Rev Biochem 77: 45-50.
Chen, G., K. Y. Chang, et al. (2009). 'Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.' Proc Natl Acad Sci U S A 106(31): 12706-12711.
Chen, G., J. D. Wen, et al. (2007). 'Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA.' RNA 13(12): 2175-2188.
Chen, J. L. and C. W. Greider (2005). 'Functional analysis of the pseudoknot structure in human telomerase RNA.' Proc Natl Acad Sci U S A 102(23): 8080-8085; discussion 8077-8089.
Chou, M. Y. and K. Y. Chang (2010). 'An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting.' Nucleic Acids Res 38(5): 1676-1685.
Cohen, S. B., M. E. Graham, et al. (2007). 'Protein composition of catalytically active human telomerase from immortal cells.' Science 315(5820): 1850-1853.
Cornish, P. V. and T. Ha (2007). 'A survey of single-molecule techniques in chemical biology.' ACS Chem Biol 2(1): 53-61.
Eid, J., A. Fehr, et al. (2009). 'Real-time DNA sequencing from single polymerase molecules.' Science 323(5910): 133-138.
Farabaugh, P. J. (1996). 'Programmed translational frameshifting.' Microbiol Rev 60(1): 103-134.
Galburt, E. A., S. W. Grill, et al. (2007). 'Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.' Nature 446(7137): 820-823.
Gillis, A. J., A. P. Schuller, et al. (2008). 'Structure of the Tribolium castaneum telomerase catalytic subunit TERT.' Nature 455(7213): 633-637.
Greider, C. W. and E. H. Blackburn (1985). 'Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.' Cell 43(2 Pt 1): 405-413.
Guydosh, N. R. and S. M. Block (2009). 'Direct observation of the binding state of the
kinesin head to the microtubule.' Nature 461(7260): 125-128.
Harris, T. D., P. R. Buzby, et al. (2008). 'Single-molecule DNA sequencing of a viral
genome.' Science 320(5872): 106-109.
Hodges, C., L. Bintu, et al. (2009). 'Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II.' Science 325(5940): 626-628.
Ishii, Y., A. Ishijima, et al. (2001). 'Single molecule nanomanipulation of biomolecules.' Trends Biotechnol 19(6): 211-216.
Jacks, T., M. D. Power, et al. (1988). 'Characterization of ribosomal frameshifting in HIV-1 gag-pol expression.' Nature 331(6153): 280-283.
Jacks, T. and H. E. Varmus (1985). 'Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting.' Science 230(4731): 1237-1242.
Jain, A., R. Liu, et al. (2011). 'Probing cellular protein complexes using single-molecule pull-down.' Nature 473(7348): 484-488.
Joo, C., H. Balci, et al. (2008). 'Advances in single-molecule fluorescence methods for molecular biology.' Annu Rev Biochem 77: 51-76.
Kim, N. K., Q. Zhang, et al. (2008). 'Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.' J Mol Biol 384(5): 1249-1261.
Liphardt, J., B. Onoa, et al. (2001). 'Reversible unfolding of single RNA molecules by mechanical force.' Science 292(5517): 733-737.
Marrone, A., P. Sokhal, et al. (2007). 'Functional characterization of novel telomerase RNA (TERC) mutations in patients with diverse clinical and pathological presentations.' Haematologica 92(8): 1013-1020.
Moore, P. B. (2009). 'The ribosome returned.' J Biol 8(1): 8.
Myong, S., I. Rasnik, et al. (2005). 'Repetitive shuttling of a motor protein on DNA.' Nature 437(7063): 1321-1325.
Namy, O., S. J. Moran, et al. (2006). 'A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.' Nature 441(7090): 244-247.
Neuman, K. C. and A. Nagy (2008). 'Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.' Nat Methods 5(6): 491-505.
Nishikawa, S., I. Arimoto, et al. (2010). 'Switch between large hand-over-hand and small inchworm-like steps in myosin VI.' Cell 142(6): 879-888.
Parot, P., Y. F. Dufrene, et al. (2007). 'Past, present and future of atomic force microscopy in life sciences and medicine.' J Mol Recognit 20(6): 418-431.
Plant, E. P., K. L. Jacobs, et al. (2003). 'The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.' RNA 9(2): 168-174.
Rondelez, Y., G. Tresset, et al. (2005). 'Highly coupled ATP synthesis by F1-ATPase single molecules.' Nature 433(7027): 773-777.
Su, L., L. Chen, et al. (1999). 'Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot.' Nat Struct Biol 6(3): 285-292.
Theimer, C. A., C. A. Blois, et al. (2005). 'Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function.' Mol Cell 17(5): 671-682.
Weiss, S. (1999). 'Fluorescence spectroscopy of single biomolecules.' Science 283(5408): 1676-1683.
Wen, J. D., L. Lancaster, et al. (2008). 'Following translation by single ribosomes one codon at a time.' Nature 452(7187): 598-603.
Yildiz, A., J. N. Forkey, et al. (2003). 'Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization.' Science 300(5628): 2061-2065.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64951-
dc.description.abstract病毒基因藉由-1核醣體框架位移(-1 ribosomal frameshifting)以表現各種不同功能的蛋白,包括結構蛋白及催化酵素。而在此機制中,訊息RNA(messenger RNAs)所形成的結構以及滑動序列(slippery sequences)皆為不可或缺的因子。而在病毒中,此RNA結構經常為一偽結(pseudoknot)。過去的許多實驗已證明了-1框架位移效率與偽結的結構穩定性有直接的關聯,當穩定性越高,則-1框架位移的比例就隨之上升。已知修改自人類端粒酶(human telomerase)的偽結結構:hTRΔU177,其具有引發框架位移的能力,且效率與其中的三重鹼基對(base-triple)形成為正相關,當三重鹼基對形成,可以穩定偽結,同時使-1框架位移效率提升;除此之外,若以一個髮夾結構及一個單股RNA(ssRNA oligo)產生鍵結組成類似的雙分子偽結結構(bimolecular pseudoknot),也一樣具有促進框架位移的能力。
而在此實驗中,利用單分子技術,以雷射光鉗(optical tweezers)測量將類偽結結構打開所需要施加的外力,進以分析三重鹼基對的形成及在ssRNA上未參與鍵結序列的改變對類偽結之結構穩定性的影響。結果發現當三重鹼基對形成,且未鍵結序列存在時,ssRNA可將解開髮夾結構之所需外力,由約17pN提升到約21.5pN;對ssRNA的改變,無論是阻礙三重鹼基對的生成,或是未鍵結序列的改變甚至是移除,則降低了ssRNA影響的程度,解開結構之外力只需要約19pN。推測這是由於本來的未鍵結序列在類偽結結構中產生了新的三重鹼基對,額外的鍵結致使結構穩定度上升。實驗的最後對hTRΔU177偽結結構做了分析,也發現當loop 2的序列改變(相對應於ssRNA上的未鍵結序列),雖不影響三重鹼基對生成,卻造成了解開結構需要的外力下降。即使機制不同於類偽結結構,卻可以肯定除了三重鹼基對的存在之外,loop 2也是影響結構穩定性的重要因子之一。
zh_TW
dc.description.abstractVirus-encoded proteins, including structural proteins and enzymes, are usually produced by -1 programmed ribosomal frameshifting. In this mechanism, the structures of the messenger RNA and the slippery sequences are required. Moreover, secondary structures of the viral mRNA usually exist in pseudoknots. Previous experiments have shown that -1 frameshifting efficiency is related to the stability of the pseudoknots.
In this project, I used hTR ΔU177, a modified pseudoknot structure derived from the human telomerase RNA. The pseudoknot can be mimicked by annealing a hairpin and an ssRNA oligo derived form hTR ΔU177 . The bimolecular pseudoknot has a reduced ability to induce -1 frameshifting as the original hTR ΔU177.
By using optical tweezers, I measured the unfolding force of a series of hTR ΔU177-related structures and analyzed the relationship between the structural stability and formation of the triplex. The unfolding force of the hairpin was increased from about 17pN to 21.5pN in the presence of the ssRNA oligo. Furthermore, I found that the unfolding force was affected by the 5’ unpaired sequence of the ssRNA oligo as well. No matter whether the 5’ unpaired sequence were truncated or mutated, the unfolding force was decreased from 21.5pN to 19pN. I assume that there are extra hydrogen bonds formed between the unpaired nucleotides of the ssRNA and the hairpin G-C stem on the hairpin.
Moreover, when the loop 2 sequence in the pseudoknot structure was mutated, the unfolding force dropped from 47pN to 41pN. All the results suggest that both the triplex and the loop 2 sequence (5’ unpaired nucleotides of the ssRNA oligo in the bimolecular pseudoknots) contribute significantly to the stabilities of the hTR ΔU177-related structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:09:49Z (GMT). No. of bitstreams: 1
ntu-101-R99b43026-1.pdf: 3715262 bytes, checksum: 7772ae45af2ad8a39fe40c8ae7cd9d13 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書………………………………………………………………………i
誌謝…………………………………………………………………………………………………ii
摘要…………………………………………………………………………………………………iii
ABSTRACT……………………………………………………………………………………v
TABLE LIST………………………………………………………………………………ix
FIGURE LIST……………………………………………………………………………ix
CHAPTER 1 INTRODUCTION
1.1 Human Telomerase RNA……………………………………………………………………………1
1.1.1 Telomerase…………………………………………………………………………………………………1
1.1.2 Pseudoknot and -1 Programmed Ribosomal
Frameshifting…………………………………………………………………………………………2
1.1.3 Human Telomerase RNA (ΔU177) and Bimolecular
Pseudoknot…………………………………………………………………………………………………3
1.2 Single-Molecule Techniques……………………………………………………………4
1.2.1 Overview………………………………………………………………………………………………………4
1.2.2 Application of Single-Molecule Techniques………………5
1.2.3 Optical Tweezers…………………………………………………………………………………5
1.3 Specific Aims………………………………………………………………………………………………6
CHAPTER 2 EXPERIMENTAL PROCEDURES
2.1 Materials…………………………………………………………………………………………………………8
2.1.1 Bacterial Strains & Plasmids…………………………………………………8
2.1.2 Kits…………………………………………………………………………………………………………………8
2.1.3 Chemicals……………………………………………………………………………………………………8
2.1.4 Enzymes…………………………………………………………………………………………………………9
2.1.5 Primers and RNA Oligos…………………………………………………………………10
2.1.6 Buffers…………………………………………………………………………………………………………11
2.2 Methods………………………………………………………………………………………………………………12
2.2.1 Plasmid Constructions……………………………………………………………………12
2.2.2 In Vitro Transcription…………………………………………………………………13
2.2.3 DNA Handles Production & Modification…………………………14
2.2.4 Anneal RNA and DNA Handles………………………………………………………16
2.2.5 hTR RNA 5’ Hairpin Structure Construction………………16
2.2.6 Mini-Tweezers Pulling Experiments……………………………………17
2.2.7 RNA Hairpin and Single-Strand RNA Oligo Hybrid
Construction……………………………………………………………………………………………19
CHAPTER 3 RESULTS
3.1 hTR 5’ hairpin……………………………………………………………………………………………20
3.2 Adding hTR 3’ ssRNA Oligo to the hTR 5’ Hairpin
Construct…………………………………………………………………………………………………………21
3.3 Mutation on the hTR 3’ ssRNA Oligo………………………………………23
3.3.1 Truncated hTR 3’ ssRNA Oligo (ThTR 3’ ssRNA
Oligo)…………………………………………………………………………………………………………………23
3.3.2 Double Truncated hTR 3’ ssRNA Oligo (TThTR 3’
ssRNA Oligo)…………………………………………………………………………………………………24
3.3.3 Mutation on the 5’ Nucleotides of hTR 3’ ssRNA
(hTR 3’ ssU)…………………………………………………………………………………………………25
3.4 Mutation on the hTR 5’ Hairpin…………………………………………………25
3.5 hTR Pseudoknot……………………………………………………………………………………………27
3.6 hTR Pseudoknot-CUU…………………………………………………………………………………28
CHAPTER 4 DISCUSSION
4.1 The Role of the Base Triple…………………………………………………………29
4.2 The Role of the 5’ Unbinding Nucleotides of the 3’
ssRNA Oligo……………………………………………………………………………………………………30
4.3 Both Triplex and Loop 2 Sequence Affect Stability of
hTR Pseudoknot……………………………………………………………………………………………31
4.4 Refolding Force of Different Constructs…………………………31
CHAPTER 5 PERSPECTIVES
5.1 Nucleotides Interactions in the Bimolecular
Pseudoknot………………………………………………………………………………………………………33
5.2 Unfolding Force of hTR Hairpin/ ThTR 3’ ssRNA Oligo
Complex………………………………………………………………………………………………………………33
5.3 The Unfolding Force Not Equals to the Stability……34
5.4 Construct Stability and -1 PRF Efficiency……………………35
REFERENCES……………………………………………………………………………………………………………………36
dc.language.isoen
dc.subject核糖核酸zh_TW
dc.subject髮夾結構zh_TW
dc.subject偽結zh_TW
dc.subject三重鹼基對zh_TW
dc.subject單分子zh_TW
dc.subject雷射光鉗zh_TW
dc.subjectoptical tweezersen
dc.subjectRNAen
dc.subjecthairpinen
dc.subjectpseudoknoten
dc.subjectbase-tripleen
dc.subjectsingle-moleculeen
dc.title雷射光鉗應用於端粒酶核醣核酸二級結構之動力學分析zh_TW
dc.titleOptical Tweezers Analysis on Structural Dynamics of the Truncated Human Telomerase RNA Structureen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張功耀,范秀芳
dc.subject.keyword核糖核酸,髮夾結構,偽結,三重鹼基對,單分子,雷射光鉗,zh_TW
dc.subject.keywordRNA,hairpin,pseudoknot,base-triple,single-molecule,optical tweezers,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2012-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved