請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64939
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳忠幟 | |
dc.contributor.author | Shih-Chuang Chiu | en |
dc.contributor.author | 邱士權 | zh_TW |
dc.date.accessioned | 2021-06-16T23:09:16Z | - |
dc.date.available | 2017-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | 第一章
[1]M. Pope, H. Kallman, and P. Magnante,Electroluminescence inorganic crystals, J. Chem. Phys. 38 (1963) 2042−2043 [2]C. W. Tang and S. A. Vanslyke, Organic electroluminescentdiodes,Appl. Phys. Lett. 51 (1987) 913–915 [3]J. H. Burreughes, D. D. C. Bredly, A. R. Brown, R. N. Marks, K. Mackay, and R. H. Friend, Light-emitting diodes based onconjugated polymers, Nature 347(1990) 539–541 [4]M. Era, C. Adachi , T. Tsutsui, and S. Saito, Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter, Chem. Phys. Lett. 178 (1991) 488–490 [5]J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Organicelectroluminescent devices based on molecularly doped polymers, Appl. Phys. Lett. 61 (1992) 761–763 [6]J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors, Phys. Rev. 54 (1938) 647–648 [7]D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Förrest, Improved energy transfer in electrophosphorescent devices, Appl.Phys. Lett. 74 (1999) 442–444 [8]R. W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philos. Mag. 4(1902) 396-402 [9]U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommer-feld's waves),J. Opt. Soc. Am. 31 (1941) 213-222 [10]A. Hessel, and A. A. Oliner, A New Theory of Wood's Anomalies on Optical Gratings, Appl. Opt. 4 (1965) 1275 [11]H. Raether, Surface plasmons, Springer, Berlin (1988) [12]A. Barbara, P. Quemerais, E. Bustarret, T. Lopez-Rios, and T. Fournier, Electromagnetic resonances of sub-wavelength rectangular metallic gratings, Eur. Phys. J. D 23 (2003) 143 [13]S. A. Maier, Plasmonics: Fundamentals and Applications, Springer-Verlag (2007) [14]K. A. Neyts, Simulation of light emission from thin-film microcavities, J. Opt. Soc. Am. A 15 (1998) 962-971 [15]H. Riel, S. Karg, T. Beierlein, W. Ries, and K. Neyts, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study, J. Appl. Phys. 94 (2003) 5290-5296 [16]A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, Physics and applications of organic microcavity light emitting diodes, J. Appl. Phys. 80 (1996) 6954-6964 [17]R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Efficiency enhancement of microcavity organic light emitting diodes, Appl. Phys. Lett. 69 (1996) 1997-1999 [18]M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, High efficiency top-emitting organic light-emitting devices, Appl. Phys. Lett. 81 (2002) 3921-3923 [19]H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Ries, Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling, Appl. Phys. Lett. 82 (2003) 466-468 [20]Z. Huang, C. Lei, D. G. Deppe, C. C. Lin, C. J. Pinzone, and R. D. Dupuis, Spectral and intensity dependence on dipole localization in Fabry–Perot cavities, Appl. Phys. Lett. 61 (1992) 2961-2963 [21]E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, Highly Efficient Light-Emitting Diodes with Microcavities, Science 265 (1994) 943-945 [22]T. Nakayama, Y. Itoh, and A. Kakuta, Organic photo‐ and electroluminescent devices with double mirrors, Appl. Phys. Lett. 63 (1993) 594-595 [23]C. J. Yang, S. H. Liu, H. H. Hsieh, C. C. Liu, T. Y. Cho, and C. C. Wu, Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution, Appl. Phys. Lett. 91 (2007) 253508 第二章 [1]D. Sarid, Long-range surface-plasma waves on very thin metal-films, Phys. Rev. Lett.47 (1981) 1927-1930 [2]J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like waves guided by thin, lossy metal-films, Phys. Rev. B 33 (1986) 5186-5201 [3]H. Raether, Surface Plasmons, Springer, Berlin (1988) [4]P. Andrew and W. L. Barnes, Energy transfer across a metal film mediated by surface Plasmon polaritons, Science 306 (2004) 1002-1005 [5]S. A. Maier, Plasmonics: Fundamentals and Applications, Springer-Verlag (2007) [6]L. H. Smith, J. A. E Wasey, and W. L. Barnes, Light outcoupling efficiency of top-emitting organic light emitting diodes, Appl. Phys. Lett. 84 (2004) 2986-2988 [7]G. W. Ford and W. H. Weber, Electromagnetic-interactions of molecules with metal-surface, Phys. Rep. 113 (1984) 195-287 [8]W. H. Weber and C. F. Eagan, Energy-transfer from an excited dye molecule to the surface-plasmons of an adjacent metal, Opt. Lett. 4 (1979) 236-238 [9]C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode, Appl. Phys. Lett. 88 (2006) 081114 [10]T. Y. Cho, C. L. Lin, and C. C. Wu, Microcavity two-unit tandem organic light-emitting devices having a high efficiency, Appl. Phys. Lett. 88 (2006) 111106 [11]S. Wedge, J. A. E Wasey, I. Sage, and W. L. Barnes, Coupled surface Plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure, Appl. Phys. Lett. 85 (2004) 182-184 [12]Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4”-tris(3-methylphenylphenylamino)triphenylamine, as hole transport material, Appl. Phys. Lett. 65 (1994) 807-809 [13]L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes, Appl. Phys. Lett. 78 (2001) 544-546 [14]C. L. Lin, H. C. Chang, K. C. Tien, and C. C. Wu, influences of resonant wavelengths on performances of microcavity organic light-emitting devices, Appl. Phys. Lett. 90 (2007) 071111 [15]C. L. Lin, H. W. Lin, and C. C. Wu, Examining microcavity organic light-emitting devices having two metal mirrors, Appl. Phys. Lett. 87 (2005) 1-3 [16]C. C. Wu, C. L. Lin, P. Y. Hsieh, and H. H. Chiang, Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices, Appl. Phys. Lett. 84 (2004) 3966-3968 [17]K. A. Neyts, Simulation of light emission from thin-film microcavities, J. Opt. Soc. Am. A 15 (1998) 962-971 [18]W. Lukosz and R. E. Kunz, Light-emission by magnetic and electric dipoles close to a plane interface. 1. Total radiated power, J. Opt. Soc. Am.67 (1977) 1607-1615 [19]J. E. Sipe, The dipole antenna problem in surface physics – A new approach, Surf. Sci. 105 (1981) 489-504 [20]J. A. E. Wasey and W. L. Barnes, Efficiency of spontaneous emission from planar microcavities, J. Mod. Opt. 47 (2000) 725-741 [21]C. W. Tang, S. A. Van Slyke, and C. H. Chen, Electroluminescence of doped organic thin-films, J. Appl. Phys. 65 (1989) 3610-3616 [22]S. Nowy, B. C. Krummacher, J. Frishcheisen, N. A. Reinke, and W. Brutting, Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency, J. Appl. Phys. 104 (2008) 123109 [23]K. Okumoto, H. Kanno, Y. Hamaa, H. Takahashi, and K. Shibata, Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%, Appl. Phys. Lett. 89 (2006) 063504 [24]K. C. Tien, M. S. Lin, Y. H. Lin, C. H. Tsai, M. H. Shiu, M. C. Wei, H. C. Cheng, C. L. Lin, H. W. Lin, C. C. Wu, Utilizing surface plasmon polartion mediated energy transfer for tunable double-emitting organic light-emitting devices, Org. Electron.11 (2010) 397-406 [25]K. H. An, M. Shtein, K. P. Pipe, Surface plasmon mediated energy transfer of electrically-pumped excitons, Opt. Express 18 (2010) 4041-4048 [26]F. J. Zhang, Z. Xu, D. W. Zhao, S. L. Zhao, L. W. Wangand G. C. Yuan, The effect of DCJTB doping concentration in PVK on the chromatic coordinate of electroluminescence, Phys. Scr. 77 (2008) 055403 第三章 [1]K. A. Neyts, Simulation of light emission from thin-film microcavities, J. Opt. Soc. Am. A 15 (1998) 962-971 [2]H. Riel, S. Karg, T. Beierlein, W. Ries, and K. Neyts, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study, J. Appl. Phys. 94 (2003) 5290-5296 [3]A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, Physics and applications of organic microcavity light emitting diodes, J. Appl. Phys. 80 (1996) 6954-6964 [4]R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Efficiency enhancement of microcavity organic light emitting diodes, Appl. Phys. Lett. 69 (1996) 1997-1999 [5]T. Nakayama, Y. Itoh, and A. Kakuta, Organic photo‐ and electroluminescent devices with double mirrors, Appl. Phys. Lett. 63 (1993) 594-595 [6]D. Sarid, Long-range surface-plasma waves on very thin metal-films, Phys. Rev. Lett. 47 (1981) 1927-1930 [7]J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like waves guided by thin, lossy metal-films, Phys. Rev. B 33 (1986) 5186-5201 [8]H. Raether, Surface Plasmons, Springer, Berlin (1988) [9]P. Andrew and W. L. Barnes, Energy transfer across a metal film mediated by surface Plasmon polaritons, Science 306 (2004) 1002-1005 [10]S. A. Maier, Plasmonics: Fundamentals and Applications, Springer-Verlag (2007) [11]L. H. Smith, J. A. E Wasey, and W. L. Barnes, Light outcoupling efficiency of top-emitting organic light emitting diodes, Appl. Phys. Lett. 84 (2004) 2986-2988 [12]C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode, Appl. Phys. Lett. 88 (2006) 081114 [13]T. Y. Cho, C. L. Lin, and C. C. Wu, Microcavity two-unit tandem organic light-emitting devices having a high efficiency, Appl. Phys. Lett. 88 (2006) 111106 [14]S. Wedge, J. A. E Wasey, I. Sage, and W. L. Barnes, Coupled surface Plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure, Appl. Phys. Lett. 85 (2004) 182-184 [15]L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes, Appl. Phys. Lett. 78 (2001) 544-546 [16]Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4”-tris(3-methylphenylphenylamino)triphenylamine, as hole transport material, Appl. Phys. Lett. 65 (1994) 807-809 [17]C. L. Lin, H. C. Chang, K. C. Tien, and C. C. Wu, influences of resonant wavelengths on performances of microcavity organic light-emitting devices, Appl. Phys. Lett. 90 (2007) 071111 [18]C. L. Lin, H. W. Lin, and C. C. Wu, Examining microcavity organic light-emitting devices having two metal mirrors, Appl. Phys. Lett. 87 (2005) 1-3 [19]C. C. Wu, C. L. Lin, P. Y. Hsieh, and H. H. Chiang, Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices, Appl. Phys. Lett. 84 (2004) 3966-3968 [20]K. A. Neyts, Simulation of light emission from thin-film microcavities, J. Opt. Soc. Am. A 15 (1998) 962-971 [21]W. Lukosz and R. E. Kunz, Light-emission by magnetic and electric dipoles close to a plane interface. 1. Total radiated power, J. Opt. Soc. Am.67 (1977) 1607-1615 [22]J. E. Sipe, The dipole antenna problem in surface physics – A new approach, Surf. Sci. 105 (1981) 489-504 [23]J. A. E. Wasey and W. L. Barnes, Efficiency of spontaneous emission from planar microcavities, J. Mod. Opt. 47 (2000) 725-741 [24]C. W. Tang, S. A. Van Slyke, and C. H. Chen, Electroluminescence of doped organic thin-films, J. Appl. Phys. 65 (1989) 3610-3616 [25]S. Nowy, B. C. Krummacher, J. Frishcheisen, N. A. Reinke, and W. Brutting, Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency, J. Appl. Phys. 104 (2008) 123109 [26]K. Okumoto, H. Kanno, Y. Hamaa, H. Takahashi, and K. Shibata, Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%, Appl. Phys. Lett. 89 (2006) 063504 [27]K. C. Tien, M. S. Lin, Y. H. Lin, C. H. Tsai, M. H. Shiu, M. C. Wei, H. C. Cheng, C. L. Lin, H. W. Lin, C. C. Wu, Utilizing surface plasmon polartion mediated energy transfer for tunable double-emitting organic light-emitting devices, Org. Electron. 11 (2010) 397-406 [28]K. H. An, M. Shtein, K. P. Pipe, Surface plasmon mediated energy transfer of electrically-pumped excitons, Opt. Express 18 (2010) 4041-4048 第四章 [1]C. L. Lin, H. C. Chang, K. C. Tien, and C. C. Wu, Influences of resonant wavelengths on performances of microcaviy organic light-emitting devices, Appl. Phys. Lett. 90 (2007) 071111 [2]C. J. Yang, S. H. Liu, H. H. Hsieh, C. C. Liu, T. Y. Cho, and C. C. Wu, Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution, Appl. Phys. Lett. 91 (2007) 253508 [3]A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, M. N. Kamalasnan, Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon, Org. electronics 13 (2010) 159-165 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64939 | - |
dc.description.abstract | 在本論文中,首先我們將有機發光二極體的金屬電極厚度變薄,在金屬電極上方蒸鍍吸收光/再放光有機層,可以將原本侷限於有機發光二極體中的表面電漿子,經由有機層將部份表面電漿能量吸收後再放光的方式,將不能放光的表面電漿模態再利用,產生輻射光場,增加有機發光二極體的出光效率,另外,藉由表面能量轉移的機制,製作出光源色彩可以改變的單邊表面電漿能量轉移之雙面異色發光二極體。
接著,我們有系統地分析具有強微共振腔效應及雙邊表面電漿能量轉移的有機發光二極體,結構是玻璃/有機層(吸收光/再放光)/陽極金屬電極/有機層/陰極金屬電極/有機層(吸收光/再放光),我們改變金屬的厚度,探討強微共振腔效應和表面電漿能量轉移對於有機發光二極體出光效率的影響,並且將實驗結果和理論計算相比較,發現相當吻合。 | zh_TW |
dc.description.abstract | In this thesis, first we reduce the thickness of metal elecctrode in organic light-emitting diodes. Then we evaporate absorbing/re-emission organic film on top of the metal eletrode to recycle a portion of surface plasmon polaritons (SPPs) in organic light-emitting diodes to induce surface plasmon polariton mediated energy transfer and re-emission.This mechanism can enhance out-coupling efficiency in organic light-emitting diodes and may be utilized for achieving double-emitting organic light-emitting diodes with single-sided surface plasmon polariton medeiated energy transfer and with color tuning capability.
Next, we analyze organic light-emitting diodes with strong microcavity effects and double-sided surface plasmon polariton mediated energy transfer systematically. The structure is glass/ organic film (absorption/re-emission)/ metallic anode/ organic film/ metallic cathode/ organic film (absorpton/re-emission). We change the thickness of metallic electrodes to investigate the effects of strong microcavity combined with surface plasmon polariton mediated energy transfer for out-coupling efficiency, colors and viewing-angle characteristics in organic light-emitting diodes. The experimental results match calculated results fairly well. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:09:16Z (GMT). No. of bitstreams: 1 ntu-101-R99941066-1.pdf: 5175074 bytes, checksum: ecbf98bcd893a8d4e31f5adca7ac4dcf (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書.....................................i
誌謝................................................ii 摘要...............................................iii Abstract............................................iv 目錄.................................................v 圖目錄.............................................vii 表目錄.............................................xii 第一章 緒論..........................................1 1.1 有機發光二極體..................................1 1.1.1 有機發光二極體簡介..........................1 1.1.2 OLED基本結構與原理..........................2 1.2 有機發光二極體中之表面電漿子效應................5 1.3 微共振腔有機發光二極體..........................9 1.4 論文架構.......................................11 參考文獻 ...........................................12 表和圖.............................................15 第二章 利用單邊表面電漿子能量轉移實現可調變的雙面異色有機發光二極體............................................19 2.1 前言 ...........................................19 2.2 實驗方法.......................................21 2.2.1 元件結構...................................21 2.2.2 OLED元件電磁波模擬.........................22 2.2.3 OLED元件製作與量測 .........................26 2.3 結果與討論.....................................29 2.3.1 OLED元件表面電漿子模態電磁波模擬...........29 2.3.2 可調變的雙面異色有機發光二極體.............30 2.4 結論 ...........................................37 參考文獻 ...........................................38 表和圖.............................................41 第三章 利用強微共振腔效應和雙邊表面電漿子能量轉移製作穿透式有機發光二極體......................................57 3.1 前言 ...........................................57 3.2 實驗方法.......................................60 3.2.1 元件結構...................................60 3.2.2 OLED元件電磁波模擬.........................62 3.2.3 OLED元件製作與量測 .........................65 3.3 結果與討論.....................................67 3.3.1 OLED元件表面電漿子模態電磁波模擬...........67 3.3.2 強微共振腔穿透式有機發光二極體.............69 3.4 結論...........................................78 參考文獻 ...........................................79 表和圖.............................................82 第四章 總結與展望...................................97 4.1 總結 ...........................................97 4.2 展望...........................................99 參考文獻 ..........................................100 | |
dc.language.iso | zh-TW | |
dc.title | 有機發光元件中的表面電漿能量轉移和微共振腔之研究 | zh_TW |
dc.title | Research of Surface Plasmon Polariton Mediated Energy Transfer and Microcavity in Organic Light-Emitting Devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俐吟,蔡志宏 | |
dc.subject.keyword | 有機發光二極體,微共振腔,表面電漿子,金屬電極,出光效率, | zh_TW |
dc.subject.keyword | organic light-emitting diodes,microcavity,surface plasmon polaritons,metallic electrodes,out-coupling efficiency, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。