請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Kai-Chiang Li | en |
| dc.contributor.author | 黎凱強 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:09:08Z | - |
| dc.date.available | 2012-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | [1] 陳添枝, '生物科技台灣生技起飛鑽石行動方案,' in TAIWAN ECONOMIC FORUM vol. 7, 胡仲英、單驥、黃萬翔, Ed., ed, June 2009 p. 3~13.
[2] 經濟部工業局, 2011生技產業白皮書, 2011. [3] 張進福, '我國生技產業現況與發展策略,' 2010. [4] J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, 'Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,' Analyst, vol. 135, pp. 2496-2511, 2010. [5] M.-I. Mohammed and M. P. Y. Desmulliez, 'Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review,' Lab on a Chip, vol. 11, pp. 569-595, 2011. [6] (2012, June 6). 行政院衛生署. Available: http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11468&level_no=1&doc_no=77184 [7] 高材, 林康平, 林峰輝, and 陳家進, 生物醫學工程導論: 滄海書局, 2010. [8] (2012, June 10). Meditech_FOS3+脈搏血氧定量計. Available: http://oximeter.holisticphysio.com/specification.html [9] C.-C. Lin, Y.-M. Yang, Y.-F. Chen, T.-S. Yang, and H.-C. Chang, 'A new protein A assay based on Raman reporter labeled immunogold nanoparticles,' Biosensors and Bioelectronics, vol. 24, pp. 178-183, 2008. [10] D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, and M. D. Porter, 'Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels,' Analytical Chemistry, vol. 75, pp. 5936-5943, 2003/11/01 2003. [11] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, 'Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,' Chemical Physics Letters, vol. 341, pp. 1-6, 2001. [12] A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, 'A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease,' Nano Letters, vol. 4, pp. 1029-1034, 2004/06/01 2004. [13] (2012, June). Biacore. Available: http://www.biacore.com/lifesciences/products/systems_overview/Biacore_4000/System-Information/index.html?backurl=%2Flifesciences%2Fproducts%2Fsystems_overview%2Findex.html [14] L. C. Clark and C. Lyons, 'ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY,' Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962. [15] B. M. Paddle, 'Biosensors for chemical and biological agents of defence interest,' Biosensors and Bioelectronics, vol. 11, pp. 1079-1113, 1996. [16] H. Suzuki, T. Hirakawa, S. Sasaki, and I. Karube, 'An integrated module for sensing pO2, pCO2, and pH,' Analytica Chimica Acta, vol. 405, pp. 57-65, 2000. [17] C.-C. Wu, T. Yasukawa, H. Shiku, and T. Matsue, 'Fabrication of miniature Clark oxygen sensor integrated with microstructure,' Sensors and Actuators B: Chemical, vol. 110, pp. 342-349, 2005. [18] C.-C. Wu, T. Saito, T. Yasukawa, H. Shiku, H. Abe, H. Hoshi, and T. Matsue, 'Microfluidic chip integrated with amperometric detector array for in situ estimating oxygen consumption characteristics of single bovine embryos,' Sensors and Actuators B: Chemical, vol. 125, pp. 680-687, 2007. [19] R. Pei, Z. Cheng, E. Wang, and X. Yang, 'Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy,' Biosensors and Bioelectronics, vol. 16, pp. 355-361, 2001. [20] (2012, June 7). Abbott-i-STAT. Available: http://www.poct.co.uk/news-detail.cfm?news_ID=44 [21] J. H. Lee, K. H. Yoon, K. S. Hwang, J. Park, S. Ahn, and T. S. Kim, 'Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein,' Biosensors and Bioelectronics, vol. 20, pp. 269-275, 2004. [22] N. Backmann, C. Zahnd, F. Huber, A. Bietsch, A. Pluckthun, H.-P. Lang, H.-J. Guntherodt, M. Hegner, and C. Gerber, 'A label-free immunosensor array using single-chain antibody fragments,' Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 14587-14592, October 11, 2005 2005. [23] B. Koenig and M. Graetzel, 'A novel immunosensor for herpes viruses,' Analytical Chemistry, vol. 66, pp. 341-344, 1994/02/01 1994. [24] B. Konig and M. Gratzel, 'A piezoelectric immunosensor for hepatitis viruses,' Analytica Chimica Acta, vol. 309, pp. 19-25, 1995. [25] L. Deng, H. Feng-jiang, J. J. Tai, N. Lihua, and Y. Shouzhuo, 'A goat-anti-human IgG modified piezoimmunosensor for Staphylococcus aureus detection,' Journal of Microbiological Methods, vol. 23, pp. 229-234, 1995. [26] H. J. Lee, K. Namkoong, E. C. Cho, C. Ko, J. C. Park, and S. S. Lee, 'Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples,' Biosensors and Bioelectronics, vol. 24, pp. 3120-3125, 2009. [27] B. Xie, M. Mecklenburg, B. Danielsson, O. Ohman, and F. Winquist, 'Microbiosensor based on an integrated thermopile,' Analytica Chimica Acta, vol. 299, pp. 165-170, 1994. [28] L. Gervais, N. de Rooij, and E. Delamarche, 'Microfluidic Chips for Point-of-Care Immunodiagnostics,' Advanced Materials, vol. 23, pp. H151-H176, 2011. [29] K. W. H. A. L. Newman, and W. D. Stanbro, 'The capacitive affinity sensor: a new biosensor,' 1986. [30] J. S. Daniels and N. Pourmand, 'Label-Free Impedance Biosensors: Opportunities and Challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007. [31] R. F. Taylor, I. G. Marenchic, and E. J. Cook, 'An acetylcholine receptor-based biosensor for the detection of cholinergic agents,' Analytica Chimica Acta, vol. 213, pp. 131-138, 1988. [32] R. F. Taylor, I. G. Marenchic, and R. H. Spencer, 'Antibody- and receptor-based biosensors for detection and process control,' Analytica Chimica Acta, vol. 249, pp. 67-70, 1991. [33] V. M. Mirsky, M. Riepl, and O. S. Wolfbeis, 'Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes,' Biosensors and Bioelectronics, vol. 12, pp. 977-989, 1997. [34] R. Maalouf, C. Fournier-Wirth, J. Coste, H. Chebib, Y. Saikali, O. Vittori, A. Errachid, J.-P. Cloarec, C. Martelet, and N. Jaffrezic-Renault, 'Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance,' Analytical Chemistry, vol. 79, pp. 4879-4886, 2007. [35] V. Nandakumar, J. T. La Belle, J. Reed, M. Shah, D. Cochran, L. Joshi, and T. L. Alford, 'A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy,' Biosensors and Bioelectronics, vol. 24, pp. 1039-1042, 2008. [36] Y.-T. Long, C.-Z. Li, H.-B. Kraatz, and J. S. Lee, 'AC Impedance Spectroscopy of Native DNA and M-DNA,' Biophysical Journal, vol. 84, pp. 3218-3225, 2003. [37] L. Yang, Y. Li, and G. F. Erf, 'Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7,' Analytical Chemistry, vol. 76, pp. 1107-1113, 2004. [38] M. Jie, C. Y. Ming, D. Jing, L. S. Cheng, L. Huai na, F. Jun, and C. Y. Xiang, 'An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,' Electrochemistry Communications, vol. 1, pp. 425-428, 1999. [39] S.-J. Ding, B.-W. Chang, C.-C. Wu, M.-F. Lai, and H.-C. Chang, 'Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes,' Electrochimica Acta, vol. 50, pp. 3660-3666, 2005. [40] J. J. Gooding and E. A. H. Hall, 'A Fill-and-Flow Biosensor,' Analytical Chemistry, vol. 70, pp. 3131-3136, 1998. [41] M. Zhao, I. S. Harding, D. B. Hibbert, and J. J. Gooding, 'A Portable Fill-and-Flow Channel Biosensor with an Electrode to Predict the Effect of Interferences,' Electroanalysis, vol. 16, pp. 1221-1226, 2004. [42] W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, 'Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,' Nat Chem, vol. 3, pp. 249-255, 2011. [43] A. Kugimiya and T. Takeuchi, 'Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone,' Electroanalysis, vol. 11, pp. 1158-1160, 1999. [44] D. N. Gray, M. H. Keyes, and B. Watson, 'Immobilized enzymes in analytical chemistry,' Analytical Chemistry, vol. 49, pp. 1067A-1078A, 1977/10/01 1977. [45] G. E. Poirier and E. D. Pylant, 'The Self-Assembly Mechanism of Alkanethiols on Au(111),' Science, vol. 272, pp. 1145-1148, May 24, 1996 1996. [46] C.-S. Chen, K.-N. Chang, Y.-H. Chen, C.-K. Lee, B. Y.-J. Lee, and A. S.-Y. Lee, 'Development of a label-free impedance biosensor for detection of antibody–antigen interactions based on a novel conductive linker,' Biosensors and Bioelectronics, vol. 26, pp. 3072-3076, 2011. [47] R. P. Janek, W. R. Fawcett, and A. Ulman, 'Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Sodium Ferrocyanide Charge Transfer at Modified Electrodes,' Langmuir, vol. 14, pp. 3011-3018, 1998/05/01 1998. [48] 吳浩青 and 李永舫, 電化學動力學, 2001. [49] 胡啟章, 電化學原理與方法(二版), 2011. [50] A. J. Bard and L. R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications, 2001. [51] S. Iseki, K. Ohashi, and S. Nagaura, 'Impedance of the oxygen-evolution reaction on noble metal electrodes,' Electrochimica Acta, vol. 17, pp. 2249-2265, 1972. [52] (2012, June 10). Syringe pump. Available: http://www.theleeco.com/PDF.nsf/bdb21d9b7952d46a85256a400071dc4c/fe897936c3b2ada685256b0a0045e00f!OpenDocument [53] (2012, June 1). NI-PCI-4461. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/202236 [54] (2012, June 1). NCBI. Available: http://www.ncbi.nlm.nih.gov/ [55] (2012, June 10). ExPASy. Available: http://web.expasy.org/compute_pi/ [56] (2012, June 10). EDC. Available: http://www.piercenet.com/browse.cfm?fldID=02030312 [57] (2012, June 10). 氧電漿機. Available: http://www.harrickplasma.com/products.php [58] (2012, June 10). 台北榮民醫院病理檢驗部. Available: http://www.path.vghtpe.gov.tw/main/biochemistry/Troponin%20I.htm | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64937 | - |
| dc.description.abstract | 隨著社會進步、生活水平的提升和醫療科技的發展,人類平均壽命已大幅增加,這也意味者高齡化社會的來臨。老年人的身體機能及代謝能力都較差,所以容易罹患多種慢性病(如高血壓、糖尿病、心血管疾病)或癌症,於是老年人居家照護和健康管理也逐漸有迫切的需求。從醫院走入一般家庭,以定點照護(Point of care)為訴求的生物感測器,陸陸續續地被開發出來,本論文的研究方向在於開發出一免標定式電化學生物感測器,嘗試能夠符合定點照護的需求。
本論文,以團隊開發的創新型導電分子為基礎,配合自己設計的晶片和流道系統,利用電化學阻抗頻譜分析技術,完成一完整的量測系統。由於使用導電性連結分子,大幅提升了傳統電化學阻抗生物感測器的訊雜比(Signal to noise ratio),降低了後端電路的設計難度和成本。在訊號處理上,使用一張訊號擷取卡,將電訊號數位化後,利用LabVIEW來設計鎖相放大器消除所有環境雜訊,以得到乾淨的阻抗資訊。另外,將泵的驅動電路整合至同一塊電路板上,都從LabVIEW設計的人機介面來進行操縱。使用最基本的微機電製程,做出以玻璃為底,金為工作電極的生物晶片。也對該生物晶片量身打造了對應的流道機構,因此乃能做到快速抽換晶片且小體積的需求。 本研究已成功運用測量C-反應蛋白、S-100蛋白所得成果,來驗證系統的可行性和靈敏度,驗證所得最低檢測極限能達到一般醫院的檢測要求。測試了不同PI值和不同分子量的蛋白分子,發現大分子的CRP比起小分子的s100蛋白有者更大的阻抗變化;在不同PI值之分子CRP和cTnI之間,所得成果並沒有發現顯著的差異。 | zh_TW |
| dc.description.abstract | With the societal advancement, living style improvement, and medical technologies development, the average human life span has increased significantly. These changes also signal the coming of aging society. The body function and metabolism of the elders are known to be weaker than grownups and children. In addition, the elders are prone to many chronic diseases or cancer. All of which indicate that home care and health care services of elders are becoming ever more important. The biosensors developed with a goal to pursue point of care are becoming more widely available. This thesis focuses on developing a label-free electrochemical biosensor that fits the point-of-care application needs.
Taking novel conducting linker as the starting point and integrating it into the corresponding chip equipped with microfluidic system developed by the NTU BioMEMS team, this thesis further utilized electrochemical impedance spectroscopy to develop a complete bio-affinity metrology system. With the adoption of the innovative conducting linker developed within the team, the signal to noise ratio of traditional electrochemical bio-affinity sensor was greatly improved such that the difficulty associated with the design and the implementation cost of the interfacing circuits were minimized. In the signal processing part, we used a DAQ card (data acquisition card) to digitize the analog signal. We then employed LabVIEW to establish the lock-in amplifier for noise elimination so as to lead to precise impedance measurement. Besides, we integrated driving circuits of syringe pump into an electro-board, which was controlled by using LabVIEW to design the HMI (Human Machine Interface). Our biochips were made by micro machining process with glass as the substrate and Au as the working electrode. We also designed a locking mechanism to ease the biochips replacement and to reduce the overall system volume. Our study measures C-reactive protein, S-100 protein, successfully. These results verified the feasibility and sensitivity of our system, which was found to meet the lowest detected limits currently required by the hospital. We found that protein with bigger molecular weight may result in bigger ΔRct changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:09:08Z (GMT). No. of bitstreams: 1 ntu-101-R99543071-1.pdf: 21152280 bytes, checksum: 0c58f25fab1c5e028c4c580a4b949cf0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 生醫感測器介紹與發展 3 1.3 阻抗式電化學生物感測器 10 1.3.1 非法拉第反應 10 1.3.2 法拉第反應 12 1.4 生物辨識層的設計 13 1.5 研究動機 16 第二章 基本原理 18 2.1 電化學基本原理 18 2.1.1 電雙層結構的理論模型 18 2.1.2 電化學反應理論 21 2.1.3 電流-過電位方程 22 2.1.4 質傳的作用 24 2.1.5 電位控制方法 26 2.2 電化學阻抗頻譜分析 28 2.2.1 交流電之電路原理 29 2.2.2 法拉第阻抗 30 2.2.3 電極交流阻抗分析 34 第三章 儀器系統建立與量測方法 37 3.1 晶片流道系統設計 37 3.1.1 電化學生物晶片設計 38 3.1.2 電化學生物晶片硬體系統 41 3.1.3 流體控制設計 41 3.2 電化學阻抗分析儀設計 42 3.2.1 恆電位儀原理與電路基礎 42 3.2.2 韌體電路設計 46 3.2.3 鎖相放大器設計 47 3.2.4 數據處理 50 3.2.5 電化學阻抗分析儀測試結果 52 3.3 電化學交流阻抗量測 55 3.3.1 連結分子與生物分子和化學試劑 55 3.3.2 溶液調配之實驗設備 56 3.3.3 電極表面修飾方法 58 3.3.4 電化學量測流程 60 第四章 實驗結果分析與討論 64 4.1 商用系統生物分子量測結果 64 4.1.1 S100β抗體-抗原反應 65 4.1.2 CRP抗體-抗原反應 67 4.1.3 cTnI抗體-抗原反應 68 4.1.4 Digoxin抗體-抗原反應 70 4.1.5 不同生物分子之比較 71 4.2 生物晶片系統量測結果 72 4.2.1 量測CS0C與金電極之反應 73 4.2.2 生物晶片量測結果 74 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 77 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | Digoxin | zh_TW |
| dc.subject | s100β | zh_TW |
| dc.subject | CRP | zh_TW |
| dc.subject | cTnI | zh_TW |
| dc.subject | 生物晶片 | zh_TW |
| dc.subject | 免標定 | zh_TW |
| dc.subject | 阻抗式生物感測器 | zh_TW |
| dc.subject | cTnI | en |
| dc.subject | Label-free | en |
| dc.subject | s100β | en |
| dc.subject | Impedance biosensor | en |
| dc.subject | Digoxin | en |
| dc.subject | CRP | en |
| dc.subject | biochip | en |
| dc.title | 免標定電化學阻抗生醫親和力感測系統之研究與開發 | zh_TW |
| dc.title | Research and development of label-free electrochemical impedance bio-affinity metrology system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 葉超雄(Chau-Shioung Yeh) | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),李舒昇(Shu-Sheng Lee),李世元(Adam Shih-Yuan Lee) | |
| dc.subject.keyword | 阻抗式生物感測器,免標定,生物晶片,cTnI,CRP,Digoxin,s100β, | zh_TW |
| dc.subject.keyword | Impedance biosensor,Label-free,biochip,cTnI,CRP,Digoxin,s100β, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 20.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
