請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | |
| dc.contributor.author | Sing-Zuo Chen | en |
| dc.contributor.author | 陳星佐 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:08:34Z | - |
| dc.date.available | 2017-07-23 | |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | 1. Cruciani, G.; Pastor, M.; Guba, W., VolSurf: a New Tool for the Pharmacokonetic Optimization of Lead Compounds. European Journal of Pharmacology Science 2000, 11, S29-S39.
2. Cruciani, G.; Pastor, M.; Mannhold, R., Suitability of Molecular Descriptors for Database Mining. A Comparative Analysis. Journal of Medicinal Chemistry 2002, 45, (13), 2685-2694. 3. Senese, C. L.; Duca, J.; Pan, D.; Hopfinger, A. J.; Tseng, Y. J., 4D-Fingerprints, Universal QSAR and QSPR Descriptors. Journal of Chemical Information and Computer Sciences 2004, 44, (5), 1526-1539. 4. Guha, R.; Schurer, S., Utilizing High Throughput Screening Data for Predictive Toxicology Models: Protocols and Application to MLSCN Assays. Journal of Computer-Aided Molecular Design 2008, 22, (6), 367-384. 5. Fourches, D.; Muratov, E.; Tropsha, A., Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. Journal of Chemical Information and Modeling 2010, 50, (7), 1189-1204. 6. Boschker, H. T. S.; Middelburg, J. J., Stable Isotopes and Biomarkers in Microbial Ecology. FEMS Microbiology Ecology 2002, 40, (2), 85-95. 7. Kipen, H. M.; Laskin, D. L., Smaller is Not Always Better: Nanotechnology Yields Nanotoxicology. American Journal of Physiology - Lung Cellular and Molecular Physiology 2005, 289, (5), L696-L697. 8. Movia, D.; Prina-Mello, A.; Bazou, D.; Volkov, Y.; Giordani, S., Screening the Cytotoxicity of Single-Walled Carbon Nanotubes Using Novel 3D Tissue-Mimetic Models. ACS Nano 2011, 5, (11), 9278-9290. 9. Kiehs, K.; Hansch, C.; Moore, L., The Role of Hydrophobic Bonding in the Binding of Organic Compounds by Bovine Hemoglobin*. Biochemistry 1966, 5, (8), 2602-2605. 10. Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S. Y.; Mumper, R. J.; Tropsha, A., Quantitative Nanostructure−Activity Relationship Modeling. ACS Nano 2010, 4, (10), 5703-5712. 11. Mu, Q.; Liu, W.; Xing, Y.; Zhou, H.; Li, Z.; Zhang, Y.; Ji, L.; Wang, F.; Si, Z.; Zhang, B.; Yan, B., Protein Binding by Functionalized Multiwalled Carbon Nanotubes Is Governed by the Surface Chemistry of Both Parties and the Nanotube Diameter. The Journal of Physical Chemistry C 2008, 112, (9), 3300-3307. 12. Apul, O.; Wang, Q.; Shao, T.; Rieck, J.; Karanfil, T., Predictive Model Development for Adsorption of Aromatic Contaminants by Multi-Walled Carbon Nanotubes. Environmental Science & Technology 2012. 13. Shaw, S. Y.; Westly, E. C.; Pittet, M. J.; Subramanian, A.; Schreiber, S. L.; Weissleder, R., Perturbational Profiling of Nanomaterial Biologic Activity. Proceedings of the National Academy of Sciences 2008, 105, (21), 7387-7392. 14. D. Selassie, C.; J. Shusterman, A.; Kapur, S.; P. Verma, R.; Zhang, L.; Hansch, C., On the Toxicity of Phenols to Fast Growing Cells. A QSAR model for a radical-based toxicity. Journal of the Chemical Society, Perkin Transactions 2 1999, (12), 2729-2733. 15. Xiao, J.; Zhao, Y.; Wang, H.; Yuan, Y.; Yang, F.; Zhang, C.; Kai, G., Non-Covalent Interaction of Dietary Polyphenols with Total Plasma Proteins of Type II Diabetes: Molecular Structure/Property-Affinity Relationships. Integrative Biology 2011, 3, (11), 1087-1094. 16. Gazzah, S.; Amara, N. E. B., New Oversampling Approaches Based on Polynomial Fitting for Imbalanced Data Sets. In Proceedings of the 2008 The Eighth IAPR International Workshop on Document Analysis Systems, IEEE Computer Society: 2008; pp 677-684. 17. Myllynen, P., Nanotoxicology: Damaging DNA from A Distance. Nat Nano 2009, 4, (12), 795-796. 18. Zhou, H.; Mu, Q.; Gao, N.; Liu, A.; Xing, Y.; Gao, S.; Zhang, Q.; Qu, G.; Chen, Y.; Liu, G.; Zhang, B.; Yan, B., A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Letters 2008, 8, (3), 859-865. 19. Groot, R. D.; Rabone, K. L., Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. Biophysical Journal 2001, 81, (2), 725-736. 20. Soller, M.; Drose, S.; Brandt, U.; Brune, B.; von Knethen, A., Mechanism of Thiazolidinedione-Dependent Cell Death in Jurkat T Cells. Molecular Pharmacology 2007, 71, (6), 1535-1544. 21. Kostarelos, K., The Long and Short of Carbon Nanotube Toxicity. Nat Biotech 2008, 26, (7), 774-776. 22. Baker, G. L.; Gupta, A.; Clark, M. L.; Valenzuela, B. R.; Staska, L. M.; Harbo, S. J.; Pierce, J. T.; Dill, J. A., Inhalation Toxicity and Lung Toxicokinetics of C60 Fullerene Nanoparticles and Microparticles. Toxicological Sciences 2008, 101, (1), 122-131. 23. Narayana Moorthy, N. S. H.; Sousa, S. F.; Ramos, M. J.; Fernandes, P. A., In Silico–Based Structural Analysis of Arylthiophene Derivatives for FTase Inhibitory Activity, hERG, and Other Toxic Effects. Journal of Biomolecular Screening 2011, 16, (9), 1037-1046. 24. Sly, W. S.; Hu, P. Y., Human Carbonic Anhydrases and Carbonic Anhydrase Deficiencies. Annual Review of Biochemistry 1995, 64, (1), 375-401. 25. Boschker, H. T. S.; Nold, S. C.; Wellsbury, P.; Bos, D.; de Graaf, W.; Pel, R.; Parkes, R. J.; Cappenberg, T. E., Direct linking of Microbial Populations to Specific Biogeochemical Processes by 13C-Labelling of Biomarkers. Nature 1998, 392, (6678), 801-805. 26. Garcia-Lorenzo, A.; Tojo, E.; Tojo, J.; Teijeira, M.; Rodriguez-Berrocal, F. J.; Gonzalez, M. P.; Martinez-Zorzano, V. S., Cytotoxicity of Selected Imidazolium-Derived Ionic Liquids in the Human Caco-2 Cell Line. Sub-Structural Toxicological Interpretation Through a QSAR Study. Green Chemistry 2008, 10, (5), 508-516. 27. Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X., Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology 2005, 39, (5), 1378-1383. 28. Shen, M.-y.; Su, B.-H.; Esposito, E. X.; Hopfinger, A. J.; Tseng, Y. J., A Comprehensive Support Vector Machine Binary hERG Classification Model Based on Extensive but Biased End Point hERG Data Sets. Chemical Research in Toxicology 2011, 24, (6), 934-949. 29. Weissleder, R.; Kelly, K.; Sun, E. Y.; Shtatland, T.; Josephson, L., Cell-Specific Targeting of Nanoparticles by Multivalent Attachment of Small Molecules. Nat Biotech 2005, 23, (11), 1418-1423. 30. Nakamura, E.; Tokuyama, H.; Yamago, S.; Shiraki, T.; Sugiura, Y., Biological Activity of Water-Soluble Fullerenes. Structural Dependence of DNA Cleavage, Cytotoxicity, and Enzyme Inhibitory Activities Including HIV-Protease Inhibition. Bulletin of the Chemical Society of Japan 1996, 69, (8), 2143-2151. 31. Tropsha, A., Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics 2010, 29, (6-7), 476-488. 32. Guengerich, F. P.; MacDonald, J. S., Applying Mechanisms of Chemical Toxicity to Predict Drug Safety. Chemical Research in Toxicology 2007, 20, (3), 344-369. 33. SCHWARTZMAN, R. A.; CIDLOWSKI, J. A., Apoptosis: The Biochemistry and Molecular Biology of Programmed Cell Death. Endocrine Reviews 1993, 14, (2), 133-151. 34. Abuchowski, A.; van Es, T.; Palczuk, N. C.; Davis, F. F., Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol. Journal of Biological Chemistry 1977, 252, (11), 3578-81. 35. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Canadian Journal of Physics 1980, 58, (8), 1200-1211. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64930 | - |
| dc.description.abstract | 近年來高通量篩選被廣泛應用在生物醫學及生物資訊領域上,傳統的生物實驗非常的耗費時間以及金錢,而且速度又慢,本篇論文是利用機器學習的方法,針對兩種不同的主題進行探討和研究。
第一個主題是針對jurkat細胞株的高通量篩選的實驗數據,利用支持向量機來建立數值模型,希望能夠得到很好的分類效果,並且幫助生物學家的再做實驗前,能夠有好的工具來篩選那些較有機率是對jurkat細胞株有毒性結構或是沒有毒性的結構,進而提升工作的效率。 第二個主題是奈米碳管活性的研究,近年來奈米碳管常常被應用在生物醫學上,當作生物感測器或是藥物攜帶者,所以奈米碳管對於人體是否有毒性越來越被人們所重視。在本篇論文當中,希望能夠透過一組經由奈米碳管的表面的修飾來降低在人體內所造成的毒性的實驗數據,經由基因演算法,找出針對牛血清白蛋白、碳酸酐酶、胰凝乳蛋白脢、血紅素以及細胞存活率、一氧化氮反應,這六種活性的最佳數值模型,其中牛血清白蛋白、碳酸酐酶、胰凝乳蛋白脢、血紅素是探討蛋白質結合的情況,而細胞存活率、一氧化氮反應,前者是探討細胞存活力,後者是有關人體免疫反應,最後進行模型以及結構上的探討。 | zh_TW |
| dc.description.abstract | In recent years, high-throughput screening is widely used in the field of biomedical and biological information. Traditional biological experiment is very time and money consuming. The thesis is discussing and studying about the use of machine learning methods for two different topics.
The first topic is building model for high-throughput screening data of jurkat cell line by support vector machine. The goal is to find out a good classification result and suggest biologists whether certain compounds are active or inactive to jurkat cell line before biological experiments. The second topic in the thesis is the study of carbon nanotubes activity. In recent years, carbon nanotubes are widely used in biomedical field and as biosensors or drug carriers. Therefore, the issue of carbon nanotube toxicity to human body is getting more and more important. In this thesis, we modify the surface of carbon nanotubes to find the relation between attached decorators and the complex toxic activity. There are six types of biological activity to be researched which are bovine serum albumin (BSA), carbonic anhydrase(CA), chymotrypsin(CT), hemoglobin, cell viability and NO response. The first four biological activities are related to protein binding, while cell viability and NO response are related to cell apoptosis and human immune response. Finally, we discuss results between models and the feature of compounds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:08:34Z (GMT). No. of bitstreams: 1 ntu-101-R99945043-1.pdf: 1311831 bytes, checksum: 8f04ad77214c7dbbdae3fb2f7c1f5681 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
ACKNOWLEDGEMENTS ii 中文摘要 iii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xi Chapter 1. Prediction models of carbon nanotube toxicity 1 1.1. Introduction 1 1.2. Material 5 1.2.1. Data source 5 1.3. Method 7 1.3.1. MOE Descriptors 7 1.3.2. 4D Fingerprints 8 1.3.3. Genetic Function Approximation 9 1.4. Results 11 1.4.1. Prediction models of carbon nanotube toxicity 11 1.4.2. Example of 13 A carbon nanotube for HB activity 25 1.5. Discussion 31 1.5.1. Predictive models of carbon nanotube toxicity 31 1.5.2. Mechanism of 10A carbon nanotube for HB binding activity 32 1.6. Conclusion 37 Chapter 2. Prediction Model of Cell Viability 38 2.1. Introduction of Cell Viability 38 2.1.1. Experiment measurement of Cell Viability data 39 2.2. Material 41 2.2.1. Training Data Set 41 2.2.2. Testing Data Set 42 2.3. Method 44 2.3.1. Support Vector Machine 44 2.3.2. 4D Fingerprints 47 2.3.3. MOE descriptors 48 2.3.4. Model Evaluation 49 2.3.5. Sampling technique for imbalanced data 50 2.4. Result and Discussion 52 2.4.1. Prediction Models of Cell Viability 52 2.4.2. SVM model building with raw data 53 2.4.3. SVM model building with jurkat cell specific data 54 2.4.4. Oversampling Method for Imbalanced Data set 57 2.4.5. Descriptors, Sampling, Modeling and Filtering contribution in Classification Model 65 2.4.6. Similarity of training dataset and testing dataset 68 2.5. Conclusion 76 BIBLIOGRAPHY 78 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 細胞毒性 | zh_TW |
| dc.subject | 高通量篩選 | zh_TW |
| dc.subject | Cytotoxicity | en |
| dc.subject | High-throughput Screening | en |
| dc.subject | Machine Learning | en |
| dc.title | 在奈米碳管回歸模型以及細胞毒性分類模型在支持向量機上的應用 | zh_TW |
| dc.title | Application of Regression Model of Carbon Nanotube Toxicity and Cytotoxicity Classification Model with Support Vector Machines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林軒田,歐陽明,陳俊良 | |
| dc.subject.keyword | 細胞毒性,機器學習,高通量篩選, | zh_TW |
| dc.subject.keyword | Cytotoxicity,High-throughput Screening,Machine Learning, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
