請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64918
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳光超(Guang-Chao Chen) | |
dc.contributor.author | Hong-Wen Tang | en |
dc.contributor.author | 唐弘文 | zh_TW |
dc.date.accessioned | 2021-06-16T23:07:49Z | - |
dc.date.available | 2017-08-28 | |
dc.date.copyright | 2012-08-28 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y., and Matsumoto, K. (1999). Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166-169.
Arsham, A. M., and Neufeld, T. P. (2009). A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4, e6068. Berry, D. L., and Baehrecke, E. H. (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137-1148. Bialik, S., Bresnick, A. R., and Kimchi, A. (2004). DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11, 631-644. Bubici, C., Papa, S., Pham, C. G., Zazzeroni, F., and Franzoso, G. (2006). The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 21, 69-80. Byun, J. Y., Yoon, C. H., An, S., Park, I. C., Kang, C. M., Kim, M. J., and Lee, S. J. (2009). The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis 30, 1880-1888. Chan, E. Y., Longatti, A., McKnight, N. C., and Tooze, S. A. (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domain using an Atg13-independent mechanism. Mol Cell Biol 29, 157-171. Chang, Y. Y., and Neufeld, T. P. (2009). An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20, 2004-2014. Chen, G. C., Lee, J. Y., Tang, H. W., Debnath, J., Thomas, S. M., and Settleman, J. (2008). Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation. Autophagy 4, 37-45. Chen, N., and Debnath, J. (2010). Autophagy and tumorigenesis. FEBS Lett 584, 1427-1435. Chen, S. F., Kang, M. L., Chen, Y. C., Tang, H. W., Huang, C. W., Li, W. H., Lin, C. P., Wang, C. Y., Wang, P. Y., Chen, G. C., and Wang, H. D. (2012). Autophagy-related gene 7 is downstream of heat shock protein 27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila. J Biomed Sci 19, 52. Cheng, Y., Qiu, F., Tashiro, S., Onodera, S., and Ikejima, T. (2008). ERK and JNK mediate TNFalpha-induced p53 activation in apoptotic and autophagic L929 cell death. Biochem Biophys Res Commun 376, 483-488. Chiacchiera, F., and Simone, C. (2009). Inhibition of p38alpha unveils an AMPK-FoxO3A axis linking autophagy to cancer-specific metabolism. Autophagy 5, 1030-1033. Deminoff, S. J., Howard, S. C., Hester, A., Warner, S., and Herman, P. K. (2006). Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae. Genetics 173, 1909-1917. Deretic, V., and Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527-549. Dorsten, J. N., Kolodziej, P. A., and VanBerkum, M. F. (2007). Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 308, 120-132. Duran, J. M., Valderrama, F., Castel, S., Magdalena, J., Tomas, M., Hosoya, H., Renau-Piqueras, J., Malhotra, V., and Egea, G. (2003). Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 14, 445-459. Escudero, L. M., Bischoff, M., and Freeman, M. (2007). Myosin II regulates complex cellular arrangement and epithelial architecture in Drosophila. Dev Cell 13, 717-729. Fukata, Y., Amano, M., and Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22, 32-39. Graves, P. R., Winkfield, K. M., and Haystead, T. A. (2005). Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280, 9363-9374. Hailey, D. W., Rambold, A. S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P. K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667. Haorah, J., Knipe, B., Gorantla, S., Zheng, J., and Persidsky, Y. (2007). Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release. J Neurochem 100, 324-336. Haorah, J., Knipe, B., Leibhart, J., Ghorpade, A., and Persidsky, Y. (2005). Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78, 1223-1232. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., and Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181, 497-510. Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11, 1433-1437. Hazzalin, C. A., and Mahadevan, L. C. (2002). MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3, 30-40. He, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W. L., Legakis, J. E., and Klionsky, D. J. (2006). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175, 925-935. Huang, J., and Manning, B. D. (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37, 217-222. Itakura, E., Kishi-Itakura, C., Koyama-Honda, I., and Mizushima, N. (2012). Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125, 1488-1499. Jin, S., and White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy 3, 28-31. Jordan, P., and Karess, R. (1997). Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J Cell Biol 139, 1805-1819. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16, 2544-2553. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19, 5720-5728. Kanda, H., and Miura, M. (2004). Regulatory roles of JNK in programmed cell death. J Biochem 136, 1-6. Kang, C., You, Y. J., and Avery, L. (2007). Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21, 2161-2171. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T., and Ohsumi, Y. (2008). Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19, 2039-2050. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P., and Guan, K. L. (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10, 935-945. Kim, M. J., Woo, S. J., Yoon, C. H., Lee, J. S., An, S., Choi, Y. H., Hwang, S. G., Yoon, G., and Lee, S. J. (2011). Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 286, 12924-12932. Kim, S., Naylor, S. A., and Diantonio, A. (2012). Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci U S A 109, E1072-1081. Kirchner, J., Gross, S., Bennett, D., and Alphey, L. (2007). The nonmuscle myosin phosphatase PP1beta (flapwing) negatively regulates Jun N-terminal kinase in wing imaginal discs of Drosophila. Genetics 175, 1741-1749. Klionsky, D. J. (2007a). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931-937. Klionsky, D. J. (2007b). The importance of diversity. Autophagy 3, 83-84. Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., and Ohsumi, Y. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-545. Kroemer, G., Marino, G., and Levine, B. (2010). Autophagy and the integrated stress response. Mol Cell 40, 280-293. Lanzetti, L. (2007). Actin in membrane trafficking. Curr Opin Cell Biol 19, 453-458. Lawlor, M. A., and Alessi, D. R. (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114, 2903-2910. Lee, S. B., Kim, S., Lee, J., Park, J., Lee, G., Kim, Y., Kim, J. M., and Chung, J. (2007). ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep 8, 360-365. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42. Levine, B., and Yuan, J. (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115, 2679-2688. Llense, F., and Martin-Blanco, E. (2008). JNK signaling controls border cell cluster integrity and collective cell migration. Curr Biol 18, 538-544. Maiuri, M. C., Galluzzi, L., Morselli, E., Kepp, O., Malik, S. A., and Kroemer, G. (2010). Autophagy regulation by p53. Curr Opin Cell Biol 22, 181-185. Manning, B. D., and Cantley, L. C. (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE 2002, pe49. Mari, M., and Reggiori, F. (2007). Atg9 trafficking in the yeast Saccharomyces cerevisiae. Autophagy 3, 145-148. Matsumura, F., Ono, S., Yamakita, Y., Totsukawa, G., and Yamashiro, S. (1998). Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol 140, 119-129. McKay, M. M., and Morrison, D. K. (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113-3121. Micchelli, C. A., and Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475-479. Miserey-Lenkei, S., Chalancon, G., Bardin, S., Formstecher, E., Goud, B., and Echard, A. (2010). Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12, 645-654. Mitonaka, T., Muramatsu, Y., Sugiyama, S., Mizuno, T., and Nishida, Y. (2007). Essential roles of myosin phosphatase in the maintenance of epithelial cell integrity of Drosophila imaginal disc cells. Dev Biol 309, 78-86. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139. Mizushima, N., and Yoshimori, T. (2007). How to interpret LC3 immunoblotting. Autophagy 3, 542-545. Murphy, L. O., and Blenis, J. (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31, 268-275. Noda, T., Kim, J., Huang, W. P., Baba, M., Tokunaga, C., Ohsumi, Y., and Klionsky, D. J. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148, 465-480. Ogihara, S., Carboni, J., and Condeelis, J. (1988). Electron microscopic localization of myosin II and ABP-120 in the cortical actin matrix of Dictyostelium amoebae using IgG-gold conjugates. Dev Genet 9, 505-520. Ohashi, Y., and Munro, S. (2010). Membrane Delivery to the Yeast Autophagosome from the Golgi-endosomal System. Mol Biol Cell 21, 3998-4008. Ono, K., and Han, J. (2000). The p38 signal transduction pathway: activation and function. Cell Signal 12, 1-13. Onodera, J., and Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280, 31582-31586. Orsi, A., Razi, M., Dooley, H. C., Robinson, D., Weston, A. E., Collinson, L. M., and Tooze, S. A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23, 1860-1873. Polson, H. E., de Lartigue, J., Rigden, D. J., Reedijk, M., Urbe, S., Clague, M. J., and Tooze, S. A. (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6. Royou, A., Sullivan, W., and Karess, R. (2002). Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J Cell Biol 158, 127-137. Saucedo, L. J., Gao, X., Chiarelli, D. A., Li, L., Pan, D., and Edgar, B. A. (2003). Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5, 566-571. Scott, R. C., Juhasz, G., and Neufeld, T. P. (2007). Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17, 1-11. Scott, R. C., Schuldiner, O., and Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7, 167-178. Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochim Biophys Acta 1496, 3-22. Shani, G., Marash, L., Gozuacik, D., Bialik, S., Teitelbaum, L., Shohat, G., and Kimchi, A. (2004). Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24, 8611-8626. Soll, D. R., Wessels, D., Murray, J., Vawter, H., Voss, E., and Bublitz, A. (1990). Intracellular vesicle movement, cAMP and myosin II in Dictyostelium. Dev Genet 11, 341-353. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119, 301-311. Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14, 2201-2214. Tooze, S. A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nat Cell Biol 12, 831-835. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174. Vabulas, R. M., and Hartl, F. U. (2005). Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963. Valente, C., Polishchuk, R., and De Matteis, M. A. (2010). Rab6 and myosin II at the cutting edge of membrane fission. Nat Cell Biol 12, 635-638. Vascotto, F., Lankar, D., Faure-Andre, G., Vargas, P., Diaz, J., Le Roux, D., Yuseff, M. I., Sibarita, J. B., Boes, M., Raposo, G., et al. (2007). The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J Cell Biol 176, 1007-1019. Vessoni, A. T., Muotri, A. R., and Okamoto, O. K. (2012). Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21, 513-520. Vicente-Manzanares, M., Ma, X., Adelstein, R. S., and Horwitz, A. R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10, 778-790. Wagner, E. F., and Nebreda, A. R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9, 537-549. Wang, M. C., Bohmann, D., and Jasper, H. (2003). JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5, 811-816. Webber, J. L., and Tooze, S. A. (2010). Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. Embo J 29, 27-40. Webber, J. L., Young, A. R., and Tooze, S. A. (2007). Atg9 trafficking in Mammalian cells. Autophagy 3, 54-56. Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30, 678-688. Wessels, D., and Soll, D. R. (1990). Myosin II heavy chain null mutant of Dictyostelium exhibits defective intracellular particle movement. J Cell Biol 111, 1137-1148. Wong, C. H., Iskandar, K. B., Yadav, S. K., Hirpara, J. L., Loh, T., and Pervaiz, S. (2010). Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS One 5, e9996. Wu, H., Wang, M. C., and Bohmann, D. (2009). JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 126, 624-637. Xie, Z., and Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109. Yang, Z., and Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335, 1-32. Yang, Z., and Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822. Young, A. R., Chan, E. Y., Hu, X. W., Kochl, R., Crawshaw, S. G., High, S., Hailey, D. W., Lippincott-Schwartz, J., and Tooze, S. A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119, 3888-3900. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64918 | - |
dc.description.abstract | 「細胞自噬」是一種細胞降解物質的途徑,在維持細胞體內平衡和對於如飢餓,缺氧和氧化壓力環境下的細胞反應扮演不可或缺的角色。在這個過程中,細胞質會被一種雙層膜囊泡,稱為細胞自噬體所吞噬,隨後與溶酶體結合,降解所吞噬的大分子,循環再利用。自噬相關基因9(Atg9)是唯一在自噬相關蛋白中發現的膜蛋白,它會在高基式體,晚期內含體,以及細胞自噬體間循環移動,這種循環移動被認為是用來提供膜給正在形成的細胞自噬體。然而,Atg9的生理作用以及調控機制到現在仍然不是很清楚。
在本論文中,我們發現了一種分子馬達-肌凝蛋白-II,能夠調節Atg9的循環移動。我們發現在果蠅中Atg1激酶會經由直接磷酸化一種新的肌球蛋白輕鏈激-Sqa,導致肌凝蛋白-II的活化。在果蠅中,降低Sqa表現量或抑制Myosin-II作用,會抑制細胞自噬體的形成。同樣的,在哺乳類細胞中,我們發現Sqa同源基因-ZIPK和肌凝蛋白-II在自噬作用中也扮演了重要的角色。我們更進一步發現Atg1對肌凝蛋白-II活化的調控,會影響到Atg9的循環移動。因此,這些研究結果提供了證據顯示Atg1會經由活化肌凝蛋白-II控制Atg9的循環移動而調控細胞自噬體的形成,而此訊息調控機轉從果蠅到人類有高度的保留性。總結,我們研究的成果揭露了細胞自噬體如何形成之作用機制。 | zh_TW |
dc.description.abstract | Autophagy, a highly conserved catabolic process, is essential for cell homeostasis and cellular response to environmental stresses, such as starvation, hypoxia, and oxidative stress. During this process, double-membrane vesicles, autophagosomes, engulf cytoplasmic components and subsequently fuse with lysosomes for degradation and recycling. Autophagy-related gene 9 (Atg9) is the only transmembrane autophagic protein which cycles between the trans-Golgi network, late endosomes and autophagosomes in mammalian cells. Atg9 cycling is proposed to deliver membrane to the forming autophagosomes. However, the precise physiological roles and the regulatory mechanism of Atg9 remain unclear.
In this thesis, we identified Atg1-activated myosin-II as a potential motor protein which regulated Atg9 cycling during starvation-induced autophagy. We found that the Ser/Thr kinase Drosophila Atg1, a key initiator of autophagy, promoted the activation of the actin-associated motor protein myosin II through direct phosphorylating of a novel myosin light chain kinase (MLCK)-like protein, Spaghetti-squash activator (Sqa). Sqa depletion or myosin II inhibition inhibited the formation of autophagosomes in larval fat body cells under starvation conditions. Consistent with the results in Drosophila, we found that ZIPK, the Sqa mammalian homolog, and myosin II played a critical role in the regulation of starvation-induced autophagy in mammalian cells. Furthermore, we found that Atg1–mediated myosin-II activation controlled the cycling of Atg9 when cells were deprived of nutrients. Thus, these findings provided evidence to fill the gaps between Atg1-mediated autophagosome formation and Atg9 cycling. In conclusion, our study expanded our understanding in mechanisms of autophagosome formation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:07:49Z (GMT). No. of bitstreams: 1 ntu-101-D96b46007-1.pdf: 7315195 bytes, checksum: 7ff175a1f4dada151c0e28ea6072ba0f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Abbreviations...........................................................................................................................iii
中文摘要...................................................................................................................................iv Abstract.................................................................................................................................... v Chapter 1 General Introduction ................................................................................ 1-16 Chapter 2 .................................................................................................................... 17-36 Chapter 3 .................................................................................................................... 37-53 Chapter 4 General Discussion .................................................................................. 54-57 Chapter 5 References ............................................................................................. 58-65 Chapter 6 Figures .................................................................................................... 66-117 | |
dc.language.iso | en | |
dc.title | Atg1與Atg9在細胞自噬上之功能研究 | zh_TW |
dc.title | Functional characterization of Atg1 and Atg9 in autophagy | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳瑞華(Ruey-Hwa Chen),張震東(Geen-Dong Chang),楊維元(Wei-Yuan Yang),汪宏達(Horng-Dar Wang) | |
dc.subject.keyword | 細胞自噬,自噬細胞相關基因1,自噬細胞相關基因9,肌凝蛋白II,細胞骨架, | zh_TW |
dc.subject.keyword | Autophagy,Atg1,Atg9,myosin-II,cytoskeleton, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。