請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64916
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李琳山(Lin-shan Lee) | |
dc.contributor.author | Jer-Ming Chang | en |
dc.contributor.author | 張哲銘 | zh_TW |
dc.date.accessioned | 2021-06-16T23:07:41Z | - |
dc.date.available | 2020-03-03 | |
dc.date.copyright | 2020-03-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-24 | |
dc.identifier.citation | [1] G. K. Wallace, “The JPEG still picture compression standard,” Commun. ACM,
vol. 34, pp. 30-44, Apr. 1991. [2] X. Wu and N. Memon, “CALIC: A context-based adaptive lossless image codec,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP- 96, vol. 4, pp. 1890-1893, 1996. [3] X. Li and M. Orchard, “Edge-directed prediction for lossless compression of natural images,” IEEE Trans. Image Processing, vol. 10, pp. 813-817, 2001. [4] 酒井善則、吉田俊之 共著,白執善 編譯,“影像壓縮技術”,全華,2004。 [5] A. E. Hoerl and R. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,” Technometric., vol. 42, issue 1, pp. 80-86, 2000. [6] P. W. Holland, “Weighted ridge regression: Combining ridge and robust regression methods,” in NBER Working Paper Series, article 11, pp. 1-19, Sept. 1973. [7] J. J. Ding, I. H. Wang and H. Y. Chen, 'Improved efficiency on adaptive arithmetic coding for data compression using range-adjusting scheme, increasingly adjusting step, and mutual-learning scheme,' IEEE Trans. Circuits and Systems for Video Technology, vol. 28, no. 12, pp. 3412-3423, Dec. 2018 [8] S. D. Rane and G. Sapiro, “Evaluation of JPEG-LS, the new lossless and near-lossless still image compression standard for compression of high-resolution elevation data,” IEEE Transactions of Geosciences and Remote Sensing, vol. 39. no. 10, pp. 2298-2306, October 2001. [9] Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, Vipin Kumar. [10] https://zh.wikipedia.org/wiki/%E8%BF%B4%E6%AD%B8%E5%88%86%E6%9E%90. [11] https://www.thelearningmachine.ai/cnn [12] https://en.wikipedia.org/wiki/Recurrent_neural_network [13] G. Toderici, S. M. O'Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compression with recurrent neural networks,” in ICLR, 2016. [14] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J.Shor, and M. Covell, “Full resolution image compression with recurrent neural networks,” in arXiv preprint:1608.05148 [cs.CV], July 2017. [15] L. Theis, W. Shi, A. Cunningham, and F. Huszar, “Lossy image compression with compressive autoencoders,” in ICLR, 2017. [16] O. Rippel and L. Bourdev, “Real-time adaptive image compression”, in ICML, 2017. [17] https://en.wikipedia.org/wiki/Sigmoid_function [18] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of Research and Development, vol. 23, no. 2, pp. 149-162, March 1979. [19] S. W. Golomb, 'Run length encodings,' IEEE Trans. Information Theory, vol. IT12, pp. 399-401, 1966. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64916 | - |
dc.description.abstract | 隨著機器學習在分類和預測領域上的蓬勃發展,我們也發現它應用在影像壓縮上的潛力。我們知道無損影像壓縮最重要的三步驟分別是:預測、預測殘差更正、熵編碼,而在本論文中,我們會針對預測和熵編碼的部分進行改善。
首先,我們加入斜向梯度的概念將傳統的預測模型梯度調整預測修改為斜向梯度調整預測,而且我們也透過動態調整預測窗格的方式將線性預測修改成動態窗格線性預測。除此之外,我們提出的動態窗格線性預測也包含相似度矩陣的概念,它會依照像素間的相似度調整對於預測結果的權重。 再來,我們提出一個利用鄰近像素資訊來結合不同預測技巧的深層類神經網路模型,並且利用此模型獲得更準確的預測結果。另外,我們知道在動態模型算術編碼下,熵編碼的壓縮效率和使用的模型有正向關係,因此,我們提出一個強健且結合區域幾何特性和預測殘差的動態模型估計器,然後在這個估計器所建構出來的動態模型下,我們提出一些能夠更快收斂到模型該有的機率分布的調整模型頻率表的技巧。 最後,我們提出一套熵編碼流程,它能夠依照預測殘差分布來動態決定算術編碼該使用的模型。此外,這套編碼流程也捨棄了傳統的模型頻率表,改為直接調整超拉普拉斯函數去逼近不同模型的機率分布,這樣的作法能夠獲得更快的收斂速度,也代表更好的壓縮效率。 | zh_TW |
dc.description.abstract | As the emerging popularity of machine learning application on classification and prediction, we discover its potential on image compression. We know that the three main pillars for lossless image compression are prediction, prediction residual correction and entropy coding. In this work, we focus on improving the prediction and entropy coding stages.
Firstly, we improve on traditional prediction techniques such as gradient adjusted prediction (GAP) and weighted linear prediction by modifying them into diagonal GAP and dynamic window weighted linear prediction which adds diagonal gradient information and adaptively adjust the prediction window size according to local information. In addition, our proposed dynamic window weighted linear prediction also includes the concept of weighting matrix which places different emphasis on pixels according to their similarity with the current pixel. Secondly, we propose a deep neural network model which utilizes neighboring pixels to adaptively combine different prediction techniques into a more accurate prediction. Moreover, since the coding efficiency of an entropy coder is positively related to the context being chosen if context arithmetic coding with frequency table is applied, we propose a robust context model estimator which utilizes local geometric and prediction residue information as well as some efficient techniques for updating the context model frequency table so as to approximate the distribution of each context in a faster rate. Finally, we propose a distribution dependent model for the generation of context in context adaptive arithmetic coding which will take the histogram of prediction residue into consideration while generating context. In addition, we also propose a novel way of approaching context arithmetic coding without the use of the traditional frequency table by adjusting the hyper-Laplacian distribution to model the context probability distribution, which results in faster convergence rate of the probability distribution as well as better overall entropy coding efficiency. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:07:41Z (GMT). No. of bitstreams: 1 ntu-109-R07942147-1.pdf: 2379131 bytes, checksum: 9bad16314eba6d9c26b3d8ce0e746a3d (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 #
ACKNOWLEDGEMENTS (誌謝) i MANDARIN ABSTRACT (中文摘要) ii ABSTRACT iii CONTENTS iv LIST OF FIGURES iv LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution of This Thesis 2 1.3 Thesis Organization 3 Chapter 2 Review of Image Compression Concepts 4 2.1 Overview of Image Compression 4 2.1.1 Performance Metric 4 2.1.2 Lossy Image Compression 5 2.1.3 Lossless Image Compression 7 2.2 JPEG 9 2.2.1 Color Space Transformation 9 2.2.2 2D Discrete Cosine Transform 12 2.2.3 Quantization 13 2.2.4 DC Coefficients: Differential Coding 14 2.2.5 AC Coefficients: Zigzag Scanning and Run-length Coding 15 2.2.6 Symbol grouping and Huffman Coding 16 2.3 Lossless Image Compression: DPCM 17 2.4 Lossless Image Compression: CALIC 15 2.5 Lossless Image Compression:: EDP 21 2.6 Entropy Coding 23 2.6.1 Huffman Coding 23 2.6.2 Golomb Coding 25 2.6.3 Context Adaptive Arithmetic Coding 26 2.7 Summary 28 Chapter 3 Proposed Adaptive Prediction, Context Modeling CALIC based Lossless Image Compression Algorithm 30 3.1 Compression Framework 31 3.2 Diagonal Gradient Adjusted Prediction 32 3.3 Dynamic Window Weighted Linear Prediction 34 3.3.1 Weighted Linear Prediction 34 3.3.2 Dynamic Window Prediction 36 3.3.3 Boundary Condition 37 3.4 Ensembling of Prediction Techniques 40 3.5 Prediction Error Modeling 42 3.6 Context Adaptive Arithmetic Coding 43 3.6.1 Context Model Estimator 44 3.6.2 Frequency Table Initialization 44 3.6.3 Range Adjusting Scheme 46 3.6.4 Local Frequency Table 46 3.7 Simulation Results 47 3.8 Summary 48 Chapter 4 Fundamental of Deep Learning 50 4.1 Introduction to Machine Learning 50 4.1.1 Overview 50 4.1.2 Bayes’ Theorem 51 4.1.3 Decision Tree 52 4.1.4 Regression 53 4.2 Artificial Neural Network 54 4.2.1 Deep Neural Network 55 4.2.2 Convolution Neural Network 57 4.2.3 Recurrent Neural Network 59 4.3 Image Compression Related Works 61 4.4 Conclusion 62 Chapter 5 Proposed Adaptive Prediction Using Deep Learning 64 5.1 Gradient Information Calculation 64 5.2 DNN Based Adaptive Prediction 66 5.2.1 Framework 66 5.2.2 Center Prediction 68 5.2.3 Boundary Prediction 70 5.2.4 Prediction Mode Selection with DNN 70 5.3 DNN Model 72 5.3.1 Motivation 72 5.3.2 Architecture 73 5.3.3 Training and Inference 75 5.4 Simulation Results 78 5.5 Summary 79 Chapter 6 Proposed Distribution Adjusting Scheme for Context Adaptive Arithmetic Coding 81 6.1 Architecture Overview 81 6.2 Context Modeling 82 6.2.1 Model Estimator 83 6.2.2 Threshold Determination 83 6.3 Context Probability Distribution Approximation 85 6.3.1 Gaussian and Hyper-Laplacian 86 6.3.2 Pareto 87 6.3.3 Comparison Results 89 6.4 Distribution Adjusting Scheme 91 6.4.1 Look Up Table 92 6.4.2 Statistics Queue 93 6.5 Simulation Results 95 6.6 Summary 96 Chapter 7 Conclusion and Future Work 97 7.1 Conclusion of the Thesis 97 7.2 Future Work 97 REFERENCE 99 | |
dc.language.iso | en | |
dc.title | 運用學習與預測方法之無損影像壓縮技術 | zh_TW |
dc.title | Learning and Prediction Techniques for Lossless Image Compression | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 丁建均(Jian-Jiun Ding) | |
dc.contributor.oralexamcommittee | 郭景明(Jing-Ming Guo),許文良(Wen-Lian Hsue) | |
dc.subject.keyword | 無損影像壓縮,深層類神經網路,梯度調整預測,斜向梯度調整預測,線性預測,動態窗格線性預測,模型頻率表,超拉普拉斯函數,熵編碼,動態模型算術編碼, | zh_TW |
dc.subject.keyword | Lossless image compression,deep neural network,gradient adjusted prediction,diagonal gradient adjusted prediction,weighted linear prediction,dynamic window weighted linear prediction,frequency table,hyper-laplacian,entropy coding,context adaptive arithmetic coding, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU202000575 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。