Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64915
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳其誠
dc.contributor.authorZong-Yi Panen
dc.contributor.author潘宗驛zh_TW
dc.date.accessioned2021-06-16T23:07:36Z-
dc.date.available2012-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-04
dc.identifier.citation[1] J-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no.4, 429-440.
[2] Paulo Ribenboim, Classical Theory of Algebraic Numbers, Springer, New York, 2001
[3] Marcus, Daniel A. Number Fields. Universitext. Springer-Verlag, New York-Heidelberg,
1977.
[4] I. M. Isaacs, Finite Group Theory, American Mathematical Society v.92, 2008.
[5] D. S. Dummit and R. M. Foote, Abstract Algebra. John Wile & Sons, Inc., New York, third
edition, 2004.
[6] F. Diamond, J.Shurman, A rst course in modular forms. Springer, 2005.
[7] Miyake Toshitsune. Modular Forms, Translated from the Japanese by Yoshitaga Maeda.
Springer-Verlag, Berlin, 1989
[8] J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original and
with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der
Mathematischen Wissenschaften, 322. Springer-Verlag, Berlin, 1999.
[9] Brauer, Richard, On Artin's L-series with general group character, Ann. of Math. (2) 48,
1947.
[10] H. W. Lenstra, Jr., and P. Stevenhagen, Chebotar ev and his density theorem, Math.
Intelligencer 18 (1996), 26-37. MR 97e:11144
[11] Charles W. Curtis, I. Reiner, Methods of Representation Theory with Applications to
Finite Groups and Orders', Wiley, New York, 1981
[12] Cox, David A. Primes of the form x2 + ny2, Fermat, class eld theory and complex multiplication.
A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989
[13] D. S. Dummit, Solving solvable quintics, Math. Comp. 57(1991), 387-401
[14] N. Koblitz, p-adic numbers, p-adic analysis, and zeta functions. Springer, Berlin, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64915-
dc.description.abstractJ.P. Serre 在 [1] 證明了有關不可約多項式模掉質數 $p$ 之解個數的定理。本篇論文開頭描述此定理並且給完整的證明。論文第二部分將以一個五次多項式 x^5-5x+12 為例來探討並且找出此多項式對應的 Artin L-函數與 weight 為 1 、 level 為 1000的模型式之間的關係。zh_TW
dc.description.abstractIn [1], J.P. Serre proves a theorem concerning the numbers of solutions to irreducible
polynomial modulo prime numbers. In this thesis, we rst study the theorem and give
a detailed proof, and in the second part of this thesis, we study the example of the
polynomial x55x+12 and relate the Artin L-function of the splitting eld to modular
forms in M1(0(1000)).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:07:36Z (GMT). No. of bitstreams: 1
ntu-101-R99221017-1.pdf: 825977 bytes, checksum: 17b35c6fd72785a863d1c0b6e0a78f1d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
List of Tables v
1 Introduction 1
2 Notation & Basic knowledge 2
2.1 Primary Decomposition in Galois extension . . . . . . . . . . . . . . . . . . . . . 2
2.2 Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Representations of Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Artin L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Adeles Rings & Ideles Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Hecke L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Modular Forms and Hecke Operator . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 The Proof of the Main Theorem 19
3.1 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 An Example 22
4.1 The Galois Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 The Expression of Np(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The Corresponding Hecke Characters . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 The Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 The Frobenius Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
References 32
dc.language.isoen
dc.subject伽羅瓦表現zh_TW
dc.subject模型式zh_TW
dc.subjectModular Formsen
dc.subjectOn A Theorem of Jordanen
dc.subjectGalois Representationsen
dc.title不可約多項式模p解之探討zh_TW
dc.titleA Survey on the Solutions to Irreducible Polynomials Modulo p and Modular Formsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee紀文鎮,黃柏嶧
dc.subject.keyword伽羅瓦表現,模型式,zh_TW
dc.subject.keywordOn A Theorem of Jordan,Galois Representations,Modular Forms,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2012-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
806.62 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved