Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林順福(Shun-Fu Lin)
dc.contributor.authorTing-Mei Kuoen
dc.contributor.author郭婷玫zh_TW
dc.date.accessioned2021-06-16T23:06:38Z-
dc.date.available2017-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-06
dc.identifier.citation行政院農業委員會農糧署統計室。2011。臺灣糧食統計要覽(民99年)。行政院農業委員會。
陳正昇、陳榮坤、金漢煊、林彥蓉。2010。以分子輔助選種導入hd1、Hd6和ehd1抽穗期基因至水稻越光品種。作物、環境與生物資訊 7:1-20。
臺灣省政府糧食處。1997。臺灣主要稻作品種外觀辨識參考手冊。臺灣省政府糧食處。臺北。
Ashida K., Iida S. and Yasui T. 2009. Morphological, physical, and chemical properties of grain and flour from chalky rice mutants. Cereal Chem. 86:225-231.
Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E. R., Qian Q, Kitano H. and Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741-745.
Bernardo R. 2008. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 48:1649-1664.
Chen H. M., Zhao Z. G., Jiang L., Wan X. Y., Liu L. L., Wu X. J. and Wan J. M. 2011. Molecular genetic analysis on percentage of grains with chalkiness in rice (Oryza sativa L.). Afr. J. Biotechnol. 10:6891-6903.
Cheng W., Zhang G., Zhao G., Yao H. and Xu H. 2003. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Res. 80:245-252.
Doi K., Izawa T., Fuse T., Yamanouchi U., Kubo T., Shimatani Z., Yano M. and Yoshimura A. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18:926-936.
Doyle J. J. and Doyle J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
Ebitani T., Yamamoto Y., Yano M. and Funane M. 2008. Identification of quantitative trait loci for grain appearance using chromosome segment substitution lines in rice. Breeding Res. 10:91-99. (in Japanese with English summary)
FAO. 2012. FAOSTAT. Homepage. http://faostat.fao/org.
Fitzgerald M. A., McCouch S. R. and Hall R. D. 2009. Not just a grain of rice: the quest for quality. Trends. Plant Sci. 14:133-139.
Fujita D., Ebron L. A., Araki E., Kato H., Khush G. S., Sheehy J. E., Lafarge T., Fukuta Y. and Kobayashi N. 2010. Fine mapping of a gene for low-tiller number, Ltn, in japonica rice (Oryza sativa L.) variety Aikawa 1. Theor. Appl. Genet. 120:1233-1240.
Gramene. 2012. GRAMENE. Homepage. http://www.gramene.org/.
Guo T., Liu X., Wan X., Weng J., Liu S., Liu X., Chen M., Li J., Su N., Wu F., Cheng Z., Guo X., Lei C., Wang J., Jiang L. and Wan J. 2011. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J. Integr. Plant Biol. 53:598-607.
Hao W., Zhu M. Z., Gao J. P., Sun S. Y. and Lin H. X. 2009. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines. J. Integr. Plant Biol. 51:500-512.
Hayashi M., Sugiura K., Kuno C., Endo I., Tanaka Y. and Yamauchi A. 2011. Reduction of rice chalky grain by deep and permanent irrigation method; effect on growth and grain quality of rice. Plant Prod. Sci. 14:282-290.
He F. H., Xi Z. Y., Zeng R. Z., Akshay T. and Zhang G. Q. 2005. Identification of QTLs for plant height and its components by using single segment substitution lines in rice (Oryza sativa). Rice Science 12:151-156.
He P., Li S. G., Qian Q., Ma Y. Q., Li J. Z., Wang W. M., Chen Y. and Zhu L. H. 1999. Genetic analysis of rice grain quality. Theor. Appl. Genet. 98:502-508.
Hittalmani S., Huang N., Courtois B., Venuprasad R., Shashidhar H. E., Zhuang J. Y., Zheng K. L., Liu G. F., Wang G. C., Sidhu J. S., Srivantaneeyakul S., Singh V. P., Bagali P. G., Prasanna H. C., McLaren G. and Khush G. S. 2003. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet. 107:679-690.
Horlings L. G. and Marsden T. K. 2011. Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernization of agriculture that could ‘feed the world’. Global Environmental Change 21:441-452.
Huang X., Qian Q., Liu Z., Sun H., He S., Luo D., Xia G.,
Chu C., Li J. and Fu X. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41:494-497.
International Rice Genome Sequencing Project 2005. The map-based sequence of the rice genome. Nature 436:793-800.
Ishimaru T., Horigane A. K., Ida M., Iwasawa N., San-oh Y. A., Nakazono M., Nishzawa N. K., Masumura T., Kondo M. and Yoshida M. 2009. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J. Cereal Sci. 50:166-174.
Jena K. K. and Mackill D. J. 2008. Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266-1276.
Jiao Y., Wang Y., Xue D., Wang J., Yan M., Liu G., Dong G., Zeng D., Lu Z., Zhu X., Qian Q. and Li J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42:541-544.
Jin L., Lu Y., Shao Y., Zhang G., Xiao P., Shen S., Corke H. and Bao J. 2010a. Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J. Cereal Sci. 51:159-164.
Jin T. Y., Li H., Guo T., Liu X. L., Su N., Wu F. Q. and Wan J. M. 2010b. Analysis of physiological and biochemical characteristics of six mutants with stable high percentage of chalkiness in rice grains. Acta Agron. Sin. 36:121-132.
Kamara J. S., Hoshino M., Satoh Y., Nayar N., Takaoka M., Sasanuma T. and Abe T. 2009. Japanese sake-brewing rice cultivars show high levels of globulin-like protein and a chloroplast stromal HSP70. Crop Sci 49:2198-2206.
Kepiro J. L., McClung A. M., Chen M. H., Yeater K. M. and Fjellstrom R. G. 2008. Mapping QTLs for milling yield and grain characteristics in a tropical japonica long grain cross. J. Cereal Sci. 48:477-485.
Kobayashi A., Genliang B., Shenghai Y. and Tomita K. 2007. Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breeding Sci. 57:107-116.
Lander E. S. and Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:195-199.
Li Z. K., Yu S. B., Lafitte H. R., Huang N., Courtois B., Hittalmani S., Vijayakumar C. H. M., Liu G. F., Wang G. C., Shashidhar H. E., Zhuang J. Y., Zheng K. L., Singh V. P., Sidhu J. S., Srivantaneeyakul S. and Khush G. S. 2003. QTL × environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet. 108:141-153.
Liao C. Y., Wu P., Hu B. and Yi K. K. 2001. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor. Appl. Genet. 103:104-111.
Lincoln S. E., Daly M. J. and Lander E. S. 1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. 3rd ed. A Whitehead Institute for Biomedical Research Technical Report.
Liu G., Zeng R., Zhu H., Zhang Z., Ding X., Zhao F., Li W. and Zhang G. 2009. Dynamic expression of nine QTLs for tiller number detected with single segment substitution lines in rice. Theor. Appl. Genet. 118:443-453.
Liu G., Zhang Z., Zhu H., Zhao F., Ding X., Zeng R., Li W. and Zhang G. 2008. Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.) with single-segment substitution lines. Theor. Appl. Genet. 116:923-931.
Liu G., Zhu H., Zhang G., Li L. and Ye G. 2012a. Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor. Appl. Genet. 125:143-153.
Liu X., Hua Z. and Wang Y. 2011a. Quantitative trait locus (QTL) analysis of percentage grains chalkiness using AFLP in rice (Oryza sativa L.). Afr. J. Biotechnol. 10:2399-2405.
Liu X., Wan X., Ma X. and Wan J. 2011b. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54:64-80.
Liu X., Wang Y. and Wang S. W. 2012b. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa). Genet. Mol. Res. 11:717-724.
Matsubara K., Kono I., Hori K., Nonoue Y., Ono N., Shomura A., Mizubayashi T., Yamamoto S., Yamanouchi U., Shirasawa K., Nishio T. and Yano M. 2008. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor. Appl. Genet. 117:935-945.
McCouch S. R., Teytelman L., Xu T., Lobos K. B., Clare K., Walton M., Fu B., Maghirang R., Li Z., Xing Y., Zhang Q., Kono I., Yano M., Fjellstrom R., DeClerck G., Schneider D., Cartinhour S., Ware D. and Stein L. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9:199-207.
Miura K., Ashikari M. and Matsuoka M. 2011. The role of QTLs in the breeding high-yielding rice. Trends. Plant Sci. 16:319-326.
Miura K., Ikeda M., Matsubara A., Song X. J., Ito M., Asano K., Matsuoka M., Kitano H. and Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545-549.
Ordonez S. A., Silva J. and Oard J.H. 2010. Association mapping of grain quality and flowering time in elite japonica rice germplasm. J. Cereal Sci. 51:337-343.
Orjuela J., Garavito A., Bouniol M., Arbelaez J. D., Moreno L., Kimball J., Wilson G., Rami J. F., Tohme J., McCouch S. R. and Lorieux M. 2010. A universal core genetic map for rice. Theor. Appl. Genet. 120:563-572.
Oya K. and Yoshida T. 2008. Effects of the period of the ventilation on occurrence of “chalky grains” in rice. Jpn. J. Crop Sci. 77:434-442. (in Japanese with English summary)
Qiao J., Liu Z., Deng S., Ning H., Yang X., Lin Z., Li G., Wang Q., Wang S. and Ding Y. 2011. Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization. Plant Soil 349:191-202.
Sakamoto T. and Matsuoka M. 2008. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 8:506-511.
Shi C. H., Wu J. G., Lou X. B., Zhu J. and Wu P. 2002. Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res. 76:1-9.
Shibaya T., Nonoue Y., Ono N., Yamanouchi U., Hori K. and Yano M. 2011. Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor. Appl. Genet. 123:1133-1143.
Subudhi P. K., Sasaki T. and Khush G. S. 2006. Rice, Cereals and Millets, Springer-Verlag Berlin Heidelberg. pp. 1-5.
Tabata M., Hirabayashi H., Takeuchi Y., Ando I., Iida Y. and Ohsawa R. 2007. Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breeding Sci. 57:47-52.
Takahashi Y., Shomura A., Sasaki T. and Yano M. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98:7922-7927.
Tsuji H., Tamaki S., Komiya R. and Shimamoto K. 2008. Florigen and the photoperiodic control of flowering in rice. Rice 1:25-35.
Wada T., Ogata T., Tsubone M., Uchimura Y. and Matsue Y. 2008. Mapping of QTLs for eating quality and physicochemical properties of the japonica rice ‘Koshihikari’. Breeding Sci. 58:427-435.
Wakamatsu K., Sasaki O., Uezono I. and Tanaka A. 2007. Effect of high air temperature during the ripening period on the grain quality of rice in warm regions of Japan. Jpn. J. Crop Sci. 76:71-78. (in Japanese with English summary)
Wan X. Y., Wan J. M., Weng J. F., Jiang L., Bi J. C., Wang C. M. and Zhai H. Q. 2005. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110:1334-1346.
Wang S., Basten C. J. and Zeng Z. B, 2011. Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, N. C.
Yamamoto T., Lin H., Sasaki T. and Yano M. 2000. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885-891.
Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. 1998. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor. Appl. Genet. 97:267-274.
Yano M., Harushima Y., Nagamura Y., Kurata N., Minobe Y. and Sasaki T. 1997. Identificaiotn of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor. Appl. Genet. 95:1025-1032.
Zhao F. M., Liu G. F., Zhu H. T., Ding X. H., Zeng R. Z., Zhang Z. M., Li W. T. and Zhang G. Q. 2008. Unconditional and conditional QTL mapping for tiller numbers at various stages with single segment substitution lines in rice (Oryza sativa L.). Agri. Sci. in China 7:257-265.
Zhao K., Wright M., Kimball J., Eizenga G., McClung A., Kovach M., Tyagi W., Ali M. L., Tung C. W., Reynolds A., Bustamante C. D. and McCouch S. R. 2010. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5:e10780.
Zhou L., Chen L., Jiang L., Zhang W., Liu L., Liu X., Zhao Z., Liu S., Zhang L., Wang J. and Wan J. 2009. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor. Appl. Genet. 118:581-590.
Zhu J., Zhou Y., Liu Y., Wang Z., Tang Z., Yi C., Tang S., Gu M. and Liang G. 2011. Fine mapping of a major QTL controlling panicle number in rice. Mol. Breeding 27:171-180.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64902-
dc.description.abstract白堊質為影響碾米品質及稻米外觀之重要性狀,本研究目的為藉由分子標誌測定影響白堊質之數量性狀基因位置,進而利用與這些基因緊密連鎖之分子標誌選拔出有較低白堊質表現之優良品系。本研究利用水稻品種越光與臺農67號雜交所產生之840個個體為材料,先以107個F2衍生品系分析112個SSR和InDel分子標誌以建立連鎖圖譜,並配合外表型資料以區間定位法定位F2和F2:3族群之數量性狀基因座,分析性狀包括白堊質米粒比例、白堊質面積及白堊質程度等三種白堊質相關性狀,以及株高、抽穗期、穗數等重要農藝性狀。並根據數量性狀基因座定位之結果,利用三組與白堊質米粒比例性狀緊密連鎖之RM1248、CH0701和RM6306分子標誌和一組與越光食味品質性狀連鎖之分子標誌RM4108輔助選拔出低白堊質稻米之優良品系,結果共篩選出23個優良基因型之品系,發現其中22個品系之白堊質米粒比例皆小於親本臺農67號,符合預期之結果,並證實選拔之效果。最後再針對這些獲選F2:5優良品系中白堊質相關性狀之分離基因座進行純化和單株選拔,將依據其在不同環境下白堊質性狀及其他重要農藝性狀,選拔出低白堊質、食味佳且產量高之優良品系。本研究於早世代(F2世代)即開始利用分子標誌輔助選拔,可大幅減少傳統育種改良過程中所需之人力和時間,且避免氣候或環境之變動影響選拔之效果,本研究結果可作為未來提高水稻育種效率之參考。zh_TW
dc.description.abstractChalkiness is one of the important traits affecting milling quality and appearance of rice grains. The purpose of this study was to identify quantitative trait loci (QTL) associated with grain chalkiness, and select rice superior lines with less grain chalkiness by marker assisted selection (MAS). A total of 840 lines derived from a cross between rice varieties Koshihikari and TNG67 were used as materials. Among these, 107 F2 derived lines were used to build a linkage map composing a total of 112 SSR and InDel polymorphic DNA markers. Phenotypic data of these 107 lines were used to identify QTL for three grain chalkiness related traits, percentage of grains with chalkiness (PGWC), area of chalky endosperm (ACE) and degree of endosperm chalkiness (DEC). QTL of plant height (PH), days to heading (HD) and panicle number (PN) were also identified by interval mapping analysis. According to the QTL mapping result, three markers, RM1248, CH0701 and RM6306, associated with grain chalkiness and one marker, RM4108, associated with eating quality trait were used to assist selecting 23 lines with less grain chalkiness. Twenty-two of the selected lines had better grain chalkiness trait than the referenced parent TNG67, confirming the expectation of MAS effects. The selected F2:5 lines were genetically purified with single plant selection based on marker genotypes of segregating loci correlated with chalkiness grain. According to the grain chalkiness and agronomic traits investigated under different environments, the most promising lines will be recommended. In this study, because MAS for the improvement of grain chalkiness traits was applied at the early generation (F2 generation), the labor and time resources were saved from the traditional breeding procedures, and the environmental disturbance for selection could be avoided. The results of this study can provide information for enhancing rice breeding efficiency.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:06:38Z (GMT). No. of bitstreams: 1
ntu-101-R99621107-1.pdf: 1159790 bytes, checksum: ce5db1ebf341d59661438e6439a22e5e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書..................................................................................... i
誌謝........................................................................................................ ii
中文摘要................................................................................................. iii
Abstract.................................................................................................. iv
目錄........................................................................................................ v
表目錄.................................................................................................... vii
圖目錄.................................................................................................... viii
一、前言.................................................................................................. 1
二、前人研究........................................................................................... 3
三、材料與方法........................................................................................ 7
(一)試驗材料........................................................................................ 7
(二)分子標誌分析................................................................................. 7
1.DNA萃取............................................................................................... 7
2.引子合成............................................................................................... 8
3.PCR分析............................................................................................... 8
4.瓊脂膠電泳分析...................................................................................... 8
(三)連鎖圖譜之建立.............................................................................. 9
(四)數量性狀基因座定位........................................................................ 9
(五)優良基因型品系之選拔................................................................... 10
(六)優良品系之外表性狀調查................................................................ 10
(七)優良品系之基因型純化................................................................... 11
四、結果................................................................................................ 12
(一)連鎖圖譜之建立............................................................................. 12
(二)數量性狀基因座定位....................................................................... 12
1.白堊質米粒比例.................................................................................... 13
2.白堊質面積........................................................................................... 13
3.白堊質程度........................................................................................... 14
4.其他重要農藝性狀................................................................................. 14
(三)優良基因型品系之選拔................................................................... 21
(四)優良品系之外表性狀調查................................................................ 21
(五)優良品系之基因型純化................................................................... 22
五、討論................................................................................................ 32
(一)連鎖圖譜之建立............................................................................. 32
(二)數量性狀基因座定位...................................................................... 32
1.白堊質米粒比例.................................................................................... 32
2.白堊質面積........................................................................................... 33
3.白堊質程度........................................................................................... 34
4.其他重要農藝性狀................................................................................. 34
(三)優良基因型品系之選拔................................................................... 37
(四)優良品系之外表性狀調查................................................................ 38
(五)優良品系之基因型純化................................................................... 39
(六)利用分子標誌輔助於早世代選拔之效果............................................ 39
六、結論................................................................................................ 40
七、參考文獻.......................................................................................... 41
dc.language.isozh-TW
dc.subject白堊質zh_TW
dc.subject水稻zh_TW
dc.subject數量性狀基因座zh_TW
dc.subject分子標誌輔助選拔zh_TW
dc.subjectriceen
dc.subjectchalkinessen
dc.subjectmarker assisted selectionen
dc.subjectquantitative trait locien
dc.title利用分子標誌輔助選拔低白堊質稻米之優良品系zh_TW
dc.titleMarker Assisted Selection for Rice Superior Lines with Less Grain Chalkinessen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧煌勝,曾富生,葉茂生,李瑞興
dc.subject.keyword水稻,數量性狀基因座,分子標誌輔助選拔,白堊質,zh_TW
dc.subject.keywordrice,quantitative trait loci,marker assisted selection,chalkiness,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2012-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved