請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳復國 | |
dc.contributor.author | Jyun-Heng Chen | en |
dc.contributor.author | 陳俊衡 | zh_TW |
dc.date.accessioned | 2021-05-11T04:51:56Z | - |
dc.date.available | 2020-08-18 | |
dc.date.available | 2021-05-11T04:51:56Z | - |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | [1]European Aluminum Association, (https://www.european-aluminium.eu)
[2]European Aluminum Association, “Aluminium Cars –Unlockin the Light –Weighting Potential” [3]Ducker Worldwide, LLC. (www.ducker.com) [4]Drive Aluminum,( http://www.drivealuminum.org/aluminum-101/driving-aluminum/) [5]European Aluminum Association, (https:// www.european-aluminum.eu/resource-hub) [6]European Aluminum Association, “The Aluminum Automotive Manual Applications - Car body - Body structures”. [7]AUDI AG, (www.audi.com/en.html) [8]P. Appendino, C. Badini, F. Marino, A. Tomasi, “6061 Aluminum alloy-SiC particulate composite: a comparison between aging behaviour in T4 and T6 treatments”, Materials Science and Engineering, A135, pp. 275-279, 1991. [9]P. Appendino, F. Marino, A. Tomasi, “Natural aging characteristics of aluminum alloy 6061 reinforced with SiC whiskers and particles”, Materials Science arid Engineering, pp. 99-107, 1991. [10] F. T. Chee, and M. R. Said, “Effect of Hardness Test on Precipitation Hardening Aluminium Alloy 6061-T6”, Journal of Science, pp276-286, 2009 [11]P. Guillon, X. Roizard, P. Belliard, “Experimental methodology to study tribological aspects of deep drawing-application to aluminum alloy sheets and tool coatings”, Tribology International, 34, pp757-766, 2001. [12]W. Xu, X. Gao, B. Zhang, L. Yang, “Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming,” SAE Technical Paper, 2018. [13]F. Ozturk , E. Esener, S. Toros, C. R. Picu , “Effects of aging parameters on formability of 6061-O alloy”, Materials & Design, 2010 [14]V. K.Barnwal, R. Raghavan, A. Tewari ,K. Narasimhan, S. K. Mishra, ”Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet”, Materials Science & Engineering, pp56-65, 2017 [15]V. K. Barnwal, A. Tewari, K. Narasimhan, and S. K. Mishra, “Effect of plastic anisotropy on forming behavior of AA-6061 aluminum alloy sheet”, Journal of Strain Analysis for Engineering Design, 2016 [16]J. T. Gau, G. L. Kinzel, “A new model for springback prediction in which the Bauschinger effect is considered”, International Journal of Mechanical Sciences, 43, pp.1813-1832, 2001. [17]O. O. Jr, “Springback in high strength anisotropic steel”, 6th International LS-DYNA Users Conference Simulation, 2000 [18]T. Uemori, S. Sumikawa, T. Naka, N. Ma and F. Yoshida, “Influence of Bauschinger Effect and Anisotropy on Springback of Aluminum Alloy Sheets”, Materials Transactions, vol. 58, No. 6, pp. 921-926, 2017. [19]F. Yoshida, T. Uemori and K. Fujiwara, “Elastic-plastic behavior of steel sheet under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, Vol. 18, pp. 633–659,2002. [20]F. Yoshida and T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International Journal of Plasticity, vol. 18, pp. 661–686, 2002. [21]蔡恒光, ”先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究”, 國立台灣大學機械工程研究所博士論文, 2012. [22]F. Barlat, J. Lian,“Plastic behavior and stretchability sheet metals. PartI:A yield function for orthotropic sheets under plane stress condition”, International Journal of Plasticity, 5, pp. 51-66, 1989. [23]D. J. Lege, F. Barlat, J. C. Brem, “Characterization and modeling of the mechanical behavior and formability of A 2008-T4 sheet sample”, International Journal of Mechanical Sciences, 7, pp. 549-563, 1989. [24]F. Barlat, D. J. Lege, J. C. Brem, “A six-component yield function for anisotropic materials”, International Journal of Plasticity, 7, pp. 693-712, 1991. [25]F. Barlat, J. C. Brem, J. Liu, “On crystallographic texture gradient and its mechanical consequence in rolled aluminum-lithium sheet”, Scripta Metallurgica et Materialia, 27, pp. 1121-1126, 1992. [26]H. Laurent, R. Greze, P. Y. Manach, S. Thuillier, “Influence of constitutive model in springback prediction using the split-ring test”, International Journal of Machanical Sciences, 51, pp. 233-245, 2009. [27]R. Li and K. J. Weinmann, “Formability in Non-Symmetric Aluminium Panel Drawing Using Active Drawbeads”, CIRP Annals - Manufacturing Technology, vol. 48, pp. 209-212, 1999. [28]Z. C. Xia and F. Ren, “An Investigation of Wall Curl Reduction Through Post-Stretch Forming”, International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, pp. 495-502, 2004. [29]姚順偉, “先進高強度鋼板之沖壓成形回彈改善研究”, 國立台灣大學機械工程研究所碩士論文, 2017. [30]Z. Chen, G. Fang, and J. Q. Zhao,” Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures”, Journal of Materials Engineering and Performance, 2017 [31]Material Property Data ,( http://www.matweb.com/) [32]林建維, “鋁合金板件沖壓成形之研究”, 國立台灣大學機械工程研究所碩士論文, 2011. [33]GOM ATOS Core introduction,( https://www.gom.com/metrology-systems/atos/atos-core.html) [34]B. P. Justusson, D. M. Spagnuolo, and J. H. Yu, “Assessing the Applicability of Digital Image Correlation (DIC) Technique in Tensile Testing of Fabric Composites”, Army research laboratory, 2013 [35]W. Muhammad, “Measurement of Plastic Strain Ratio Using Digital Image Correlation”, Journal of Testing and Evaluation, 2017. [36]R. Hill, “Constitutive modelling of orthotropic plasticity in sheet metals”, Journal of the Mechanics and Physics of Solids, vol. 38, pp. 405-417, 1990. [37]F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, and E. Chu, “Plane stress yield function for aluminum alloy sheets-part1”, International Journal of Plasticity, vol. 19, pp. 1297-1319, 2003. [38]J. W. Yoon, F. Barlat, R. E. Dick, K. Chung, and T. J. Kang, “Plane stress yield function for aluminum alloy sheets—part2”, International Journal of Plasticity, vol. 20, pp. 495-522, 2004. [39]蘇昱竹, “先進高強度鋼板沖壓成形回彈現象之研究” , 國立台灣大學機械工程研究所碩士論文,2007. [40]V. K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, S. K. Mishra, “Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet”, Materials Science and Engineering, vol. 679, pp. 56-65, 2017. [41]S. G. Xu, M. L. Bohn, and K. J. Weinmann, “Drawbeads in sheet metal stamping-A review”, SAE Technical Paper, 1997. [42]V. Simões, H. Laurent, M. Oliveira, and L. Menezes, “The influence of warm forming in natural aging and springback of Al-Mg-Si alloys”, International Journal of Material Forming, pp. 57–68, 2018 [43]鄭耀偉, “高溫摩擦試驗設備改良與熱沖壓摩擦特性研究”, 國立交通大學機械工程學系碩士論文, 2018 [44]J. Hardell, B. Prakash, Kurt Steinhoff, “High Temperature Tribological Studies on Surface Engineered Tool Steel and High,” Metal Forming, pp. 665-670, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/648 | - |
dc.description.abstract | 本論文主要探討鋁合金A6061在冷成形製程下透過阻料條設計改善回彈以及透過溫成形製程改善回彈的方式。兩者回彈改善機制並不相同,以阻料條設計而言,是透過後拉伸的方式改善板材內外表面應力不均的現象,進而抑制回彈現象;而溫成形製程則是透過加熱板件使得其材料曲線強度降低,進而使得產生回彈量減小。
在分析上述製程前,先探討鋁合金A6061-O與A6061-T6之材料性質與材料參數,包含A6061-O與A6061-T6之加工硬化指數與塑性應變比值等材料參數,針對材料參數進行成形性與回彈分析,藉此比較鋁合金與鋼材不同材料性質對應之成形性與回彈差異。後續再建立A6061之材料模型,其中包括非等向性之降伏準則參數 (Hill48、Barlat91),並且探討A6061-O與A6061-T6之包辛格效應(Bauschinger effect),建立鋁合金A6061-T6之Yoshida模型。 建立上述之材料模型後,透過基礎載具包含V型彎曲、U型帽狀引伸等模具進行回彈模擬分析,驗證前述材料模型之準確性,建立適合鋁合金A6061之回彈分析模型,並且進行後續的回彈改善研究。 針對回彈改善方法,本論文首先探討阻料條改善A6061-T6之回彈, 使用阻料條設計流程建立適合鋁合金A6061-T6之阻料條造型,並使用U型帽狀引伸模具搭配可調式阻料條驗證其阻料條設計,確認其有效改善回彈。另外也探討鋁合金在溫成形製程條件下回彈改善的趨勢,使用V型彎曲溫成形實驗,得到A6061-T6在三溫度製程條件下的回彈改善角度,發現隨溫度升高,其回彈角度有變小的趨勢。並且依照沖頭圓角較大的彎曲成形,其回彈改善比率較大。 | zh_TW |
dc.description.abstract | This thesis mainly studied the springback improvement methods of the aluminum alloy A6061, including using the drawbead in cold forming process and forming aluminum in warm temperature. These springback improvement methods are not the same diminishing springback mechanism. In terms of drawbead design, drawbead can achieve “post-stretch” effect and unify stress distribution on blank’s upper or lower surface. On the other hand, due to material strength reduced after heating the blank, the springback phenomenon improved.
Before analyzation these two process, the material properties of the aluminum alloy A6061-O and A6061-T6 were studied first. The material properties include working-hardening ratio and plastic strain ratio etc…The influence of A6061 material properties in formability and springback had been analyzed, and the differience of formability and springback between aluminum and steel had been discussed. The material model of A6061 has been established, including non-isotropic yield function parameters (Hill48, Barlat91). On the other hand, Bauschinger effect of A6061 had been considered in this thesis, so the Yoshida- Uemori model of A6061-T6 was established. After established the material models, the springback analysis simulations including V-bending and U-hat drawing were conducted in this thesis. With simulations of different material models, the proper material model could be figured out by comparing with experiment data. About springback improvement methods, the drawbead design was studied to eliminate the springback of A6061-T6. The U-hat shape drawing die with drawbead design experiment was conducted to confirm influence of drawbead design on the springback phenomenon. The V-bending warm forming process of aluminum A6061-T6 was also conducted to discuss the springback improvement in three experimental temperatures. The results show that the springback degree decreases when the blank temperature increases, and the ratio of springback improvement increases when the fillet of punch increases. | en |
dc.description.provenance | Made available in DSpace on 2021-05-11T04:51:56Z (GMT). No. of bitstreams: 1 ntu-108-R06522533-1.pdf: 13777690 bytes, checksum: 63f774772a9dd631a940ecaf5c4e3679 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 II
Abstract IV 目錄 VI 圖目錄 X 表目錄 XVII 1.1前言 1 1.2研究動機與目的 3 1.3文獻回顧 5 1.4研究方法與步驟 9 1.5論文總覽 10 第二章 鋁合金材料性質之研究 12 2.1鋁合金性質簡介 12 2.1.1鋁合金各系列種類 12 2.1.2鋁合金熱處理 13 2.2 鋁合金A6061特性探討 14 2.2.1熱處理製程 15 2.2.2鋁合金A6061各狀態之材料性質比較 19 2.3鋁合金與鋼材之成形與回彈差異 22 2.3.1鋁合金與鋼材之材料性質差異 22 2.3.2楊氏係數與降伏強度對回彈之影響 24 2.3.3材料參數對不同成形模式之影響 29 2.4基礎材料試驗規劃 36 2.4.1 DIC量測平台建立與驗證 36 2.4.2單軸拉伸試驗 39 2.4.3塑性應變比值試驗 41 2.4.4摩擦實驗 49 第三章 鋁合金材料模型探討與建立 54 3.1降伏準則之研究與建立 54 3.1.1 Hill48降伏準則之探討 54 3.1.2 Hill90降伏準則之探討 57 3.1.3Barlat89 以及Barlat 91降伏準則之探討 59 3.1.4 Hill48與Barlat91降伏準則參數建立 61 3.2加工硬化準則之探討 62 3.3Yoshida材料模型之探討 64 3.2.1 Yoshida-Uemori model(Y-U model)之探討 64 3.2.2反覆拉壓試驗 67 3.2.3 A6061-T6包辛格效應探討 72 3.2.4 Yoshida材料模型之參數建立 76 第四章 鋁合金回彈模擬分析與實驗探討 87 4.1回彈類型簡介 87 4.2 V型彎曲成形分析 90 4.2.1 V型彎曲成形模擬分析 91 4.2.2 V型彎曲成形實驗 93 4.3 U型帽狀成形分析 98 4.3.1 U型帽狀成形模擬分析 99 4.3.2 U型帽狀成形實驗 101 4.4小結 107 第五章 鋁合金回彈缺陷改善之探討 108 5.1鋁合金冷成形之回彈缺陷改善 108 5.1.1回彈改善機制 108 5.1.2變壓料力設計流程 113 5.1.3阻料條設計流程 116 5.1.4可調式阻料條之回彈實驗驗證 127 5.2鋁合金溫成形對回彈缺陷之影響 131 5.2.1溫成形簡介 131 5.2.2溫成形實驗平台建立與實驗流程 132 5.2.3溫成形實驗探討 137 5.3小結 139 第六章 結論 140 參考文獻 142 | |
dc.language.iso | zh-TW | |
dc.title | 鋁合金板件沖壓成形之回彈分析與改善研究 | zh_TW |
dc.title | Analysis and Elimination of Springback in the Stamping Process of Aluminum Alloy Sheets | en |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃佑民,黃永茂,敖仲寧,林恆勝 | |
dc.subject.keyword | 鋁合金板件,A6061-O,A6061-T6,包辛格效應,側壁捲曲,可調式阻料條,溫成形,有限元素分析, | zh_TW |
dc.subject.keyword | aluminium alloy,A6061-O,A6061-T6,Bauschinger effect,side-wall curl,adjustable drawbead,warm forming,finite element analysis, | en |
dc.relation.page | 146 | |
dc.identifier.doi | 10.6342/NTU201903696 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 13.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。