Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64887
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李國譚(Kuo-Tan Li)
dc.contributor.authorMeng-Hsun Heen
dc.contributor.author何孟勳zh_TW
dc.date.accessioned2021-06-16T23:05:27Z-
dc.date.available2012-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-06
dc.identifier.citation1. 5. References
Abdel-Reheem, S., M.H. Belal, and G. Gupta. 1991. Photosynthesis inhibition of soybean leaves by insecticides. Environ. Pollut. 74:245-250.
Alterio, G., P. Giorio, and G. Sorrentino. 2006. Open-system chamber for measurements of gas exchanges at plant level. Environ. Sci. Technol. 40:1950-1955.
Austin, R.B. and P.C. Longden. 1967. A rapid method for measurement of rates of photosynthesis using 14CO2. Ann. Bot. 31:245-253.
Bai, R.Q., T.K. Schlegel, J. Schonherr, and P.W. Masinde. 2008. The effects of foliar applied CaCl2•2H2O, Ca(OH)2 and K2CO3 combined with the surfactants Glucopon and Plantacare on gas exchange of 1 year old apple (Malus domestica BORKH.) and broad bean (Vicia faba L.) leaves. Scientia Hort. 116:52-57.
Baudoin, A., S.F. McDonald, and T.K. Wolf. 2006. Factors affecting reductions in photosynthesis caused by applying horticultural oil to grapevine leaves. HortScience 41:346-351.
Blanke, M.M. and D.T. Cooke. 2004. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation 42:153-160.
Bugbee, B. 1992. Steady-state canopy gas exchange: system design and operation. HortScience 27:770-776.
Burkart, S., R. Manderscheid, and H.J. Weigel. 2007. Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies. Environ. Expt. Bot. 61:25-34.
Buwalda, J.G., T.G.A. Green, J.S. Meekings, and D.J. Coneybear. 1992. Measurement of canopy gas-exchange of kiwifruit vines using a suite of whole-canopy cuvettes. Environ. Expt. Bot. 32:425-438.
Claussen, W. and F. Lenz. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95-102.
Corelli-Grappadelli, L. and E. Magnanini. 1993. A whole-tree system for gas-exchange studies. HortScience 28:41-45.
Ferree, D.C. and E.J. Stang. 1988. Seasonal plant shading, growth, and fruiting in 'Earliglow' strawberry. J. Amer. Soc. Hort. Sci. 113:322-327.
Field, C.B., R.B. Jackson, and H.A. Mooney. 1995. Stomatal responses to increased CO2: implication from the plant to the global scale. Plant Cell and Environment 18:1214-1225.
Flore, J.A. and A.N. Lakso. 1989. Environmental and physiological regulation of photosynthesis in fruit crops. Hort. Rev. 11:111-157.
Forney, C.F. and P.J. Breen. 1985. Dry-matter partitioning and assimilation in fruiting and deblossomed strawberry. J. Amer. Soc. Hort. Sci. 110:181-185.
Grau, A. 1995. A closed-chamber technique for field measurement of gas-exchange of forage canopies. N. Z. J. Agric. Res. 38:71-77.
Gruber, B.R., L.R.R. Davies, E.L. Kruger, and P.S. McManus. 2009. Effects of Copper-Based Fungicides on Foliar Gas Exchange in Tart Cherry. Plant Disease 93:512-518.
Haile, F.J., D.L. Kerns, J.M. Richardson, and L.G. Higley. 2000. Impact of insecticides and surfactant on lettuce physiology and yield. J. Econ. Entomol. 93:788-794.
Hatch, M.D. and C.R. Slack. 1966. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and pathway of sugar formation. Biochem. J. 101:103-111.
Hunt, S. 2003. Measurements of photosynthesis and respiration in plants. Physiologia Plantarum 117:314-325.
Jarvis, P.G. 1995. Scaling processes and problems. Plant Cell and Environment 18:1079-1089.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1979. Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol. 63:542-547.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70:1044-1048.
Kadir, S., G. Sidhu, and K. Al-Khatib. 2006. Strawberry (Fragaria xananassa Duch.) growth and productivity as affected by temperature. HortScience 41:1423-1430.
Keutgen, N., K. Chen, and F. Lenz. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 150:395-400.
Klamkowski, K., M. Sekrecka, H. Fonyodi, and W. Treder. 2006. Changes in the rate of gas exchange, water consumption and growth in strawberry plants infested with the two-spotted spider mite. Journal of Fruit and Ornamental Plant Research 14:155-162.
Klingeman, W.E., G.D. Buntin, M.W. van Iersel, and S.K. Braman. 2000. Whole-plant gas exchange, not individual-leaf measurements, accurately assesses azalea response to insecticides. Crop Protection 19:407-415.
Lapre, L.F., F.V. Sances, N.C. Toscano, E.R. Oatman, V. Voth, and M.W. Johnson. 1982. The effects of acaricides on the physiology, growth, and yield of strawberries. J. Econ. Entomol. 75:616-619.
Moran, R.E., D.E. Deyton, C.E. Sams, C.D. Pless, and J.C. Cummins. 2003. Soybean oil as a summer spray for apple: European red mite control, net CO2 assimilation and phytotoxicity. HortScience 38:234-238.
Pena, J.P. and J. Tarara. 2004. A portable whole canopy gas exchange system for several mature field-grown grapevines. Vitis 43:7-14.
Petit, A.N., F. Fontaine, C. Clement, and N. Vaillant-Gaveau. 2008. Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. J. Agric. Food Chem. 56:6761-6767.
Petit, A.N., F. Fontaine, C. Clement, and N. Vaillant-Gaveau. 2009a. Gating in grapevine: Relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis. Environ. Pollut. 157:130-134.
Petit, A.N., G. Wojnarowiez, M.L. Panon, F. Baillieul, C. Clement, F. Fontaine, and N. Vaillant-Gaveau. 2009b. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms. Planta 229:497-506.
Petrie, P.R., M.C.T. Trought, G.S. Howell, and G.D. Buchan. 2003. The effect of leaf removal and canopy height on whole-vine gas exchange and fruit development of Vitis vinifera L. Sauvignon Blanc. Functional Plant Biology 30:711-717.
Petrie, P.R., M.C.T. Trought, G.S. Howell, G.D. Buchan, and J.W. Palmer. 2009. Whole-canopy gas exchange and light interception of vertically trained Vitis vinifera L. under direct and diffuse light. Am J Enol Viticult 60:173-182.
Poni, S., E. Magnanini, and B. Rebucci. 1997. An automated chamber system for measurements of whole-vine gas exchange. HortScience 32:64-67.
Saladin, G., C. Magne, and C. Clement. 2003. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Pest Management Science 59:1083-1092.
Sances, F.V., J.A. Wyman, I.P. Ting, R.A. Vansteenwyk, and E.R. Oatman. 1981. Spider-mite interactions with photosynthesis, transpiration and productivity of strawberry. Environmental Entomology 10:442-448.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986a. Net photosynthesis, dark respiration, stomatal conductance, specific leaf weight, and chlorophyll content of strawberry plants as influenced by fruiting. J. Amer. Soc. Hort. Sci. 111:82-86.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986b. Whole plant photosynthesis and dry-matter partitioning in fruiting and deblossomed day-neutral strawberry plants. J. Amer. Soc. Hort. Sci. 111:430-433.
Spiers, J.D., F.T. Davies, C.J. He, C.E. Bogran, K.M. Heinz, T.W. Starman, and A. Chan. 2006. Effects of insecticides on gas exchange, vegetative and floral development, and overall quality of gerbera. HortScience 41:701-706.
Tabatabaei, S.J., L.S. Fatemi, and E. Fallahi. 2006. Effect of ammonium: Nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry. J. Plant Nutr. 29:1273-1285.
Trumble, J.T., W. Carson, H. Nakakihara, and V. Voth. 1988. Impact of pesticides for tomato fruitworm (Lepidoptera, noctuidae) suppression on photosynthesis, yield, and nontarget arthropods in strawberries. J. Econ. Entomol. 81:608-614.
Turechek, W.W., M.C. Heidenreich, A.N. Lakso, and M.P. Pritts. 2007. Estimation of the impact of leaf scorch on photosynthesis and 'physiological-lesion' size in strawberry. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 29:159-165.
Untiedt, R. and M.M. Blanke. 2004. Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis, dark respiration and carbon economy. Crop Protection 23:1001-1006.
Wunsche, J.N. and J.W. Palmer. 1997. Portable through-flow cuvette system for measuring whole-canopy gas exchange of apple trees in the field. HortScience 32:653-658.
Walsh, D.B., F.G. Zalom, and D.V. Shaw. 1998. Interaction of the twospotted spider mite (Acari : Tetranychidae) with yield of day-neutral strawberries in California. J. Econ. Entomol. 91:678-685.
Wood, B., T. Gottwald, and J. Payne. 1984. Influence of single applications of fungicides on net photosynthesis of pecan. Plant Disease 68:427-428.

2. 5. Reference
Blanke, M.M. and D.T. Cooke. 2004. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation 42:153-160.
Bugbee, B. 1992. Steady-state canopy gas exchange: system design and operation. HortScience 27:770-776.
Burkart, S., R. Manderscheid, and H.J. Weigel. 2007. Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies. Environ. Expt. Bot. 61:25-34.
Claussen, W. and F. Lenz. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95-102.
Ferree, D.C. and E.J. Stang. 1988. Seasonal plant shading, growth, and fruiting in 'Earliglow' strawberry. J. Amer. Soc. Hort. Sci. 113:322-327.
Field, C.B., R.B. Jackson, and H.A. Mooney. 1995. Stomatal responses to increased CO2: implication from the plant to the global scale. Plant Cell and Environment 18:1214-1225.
Forney, C.F. and P.J. Breen. 1985. Dry-matter partitioning and assimilation in fruiting and deblossomed strawberry. J. Amer. Soc. Hort. Sci. 110:181-185.
Hunt, S. 2003. Measurements of photosynthesis and respiration in plants. Physiologia Plantarum 117:314-325.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1979. Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol. 63:542-547.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70:1044-1048.
Kadir, S., G. Sidhu, and K. Al-Khatib. 2006. Strawberry (Fragaria xananassa Duch.) growth and productivity as affected by temperature. HortScience 41:1423-1430.
Keutgen, N., K. Chen, and F. Lenz. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 150:395-400.
Klamkowski, K., M. Sekrecka, H. Fonyodi, and W. Treder. 2006. Changes in the rate of gas exchange, water consumption and growth in strawberry plants infested with the two-spotted spider mite. Journal of Fruit and Ornamental Plant Research 14:155-162.
Lapre, L.F., F.V. Sances, N.C. Toscano, E.R. Oatman, V. Voth, and M.W. Johnson. 1982. The effects of acaricides on the physiology, growth, and yield of strawberries. J. Econ. Entomol. 75:616-619.
Phillips, N. and B.J. Bond. 1999. A micro-power precision amplifier for converting the output of light sensors to a voltage readable by miniature data loggers. Tree Physiol. 19:547-549.
Poni, S., E. Magnanini, and B. Rebucci. 1997. An automated chamber system for measurements of whole-vine gas exchange. HortScience 32:64-67.
Sances, F.V., J.A. Wyman, I.P. Ting, R.A. Vansteenwyk, and E.R. Oatman. 1981. Spider-mite interactions with photosynthesis, transpiration and productivity of strawberry. Environmental Entomology 10:442-448.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986a. Net photosynthesis, dark respiration, stomatal conductance, specific leaf weight, and chlorophyll content of strawberry plants as influenced by fruiting. J. Amer. Soc. Hort. Sci. 111:82-86.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986b. Whole plant photosynthesis and dry-matter partitioning in fruiting and deblossomed day-neutral strawberry plants. J. Amer. Soc. Hort. Sci. 111:430-433.
Tabatabaei, S.J., L.S. Fatemi, and E. Fallahi. 2006. Effect of ammonium: Nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry. J. Plant Nutr. 29:1273-1285.
Trumble, J.T., W. Carson, H. Nakakihara, and V. Voth. 1988. Impact of pesticides for tomato fruitworm (Lepidoptera, noctuidae) suppression on photosynthesis, yield, and nontarget arthropods in strawberries. J. Econ. Entomol. 81:608-614.
Turechek, W.W., M.C. Heidenreich, A.N. Lakso, and M.P. Pritts. 2007. Estimation of the impact of leaf scorch on photosynthesis and 'physiological-lesion' size in strawberry. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 29:159-165.
Weiss, I., Y. Mizrahi, and E. Raveh. 2009. Chamber response time: A neglected issue in gas exchange measurements. Photosynthetica 47:121-124.

3. 5. Reference
Blanke, M.M. and D.T. Cooke. 2004. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation 42:153-160.
Bugbee, B. 1992. Steady-state canopy gas exchange: system design and operation. HortScience 27:770-776.
Burkart, S., R. Manderscheid, and H.J. Weigel. 2007. Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies. Environ. Expt. Bot. 61:25-34.
Claussen, W. and F. Lenz. 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95-102.
Ferree, D.C. and E.J. Stang. 1988. Seasonal plant shading, growth, and fruiting in 'Earliglow' strawberry. J. Amer. Soc. Hort. Sci. 113:322-327.
Field, C.B., R.B. Jackson, and H.A. Mooney. 1995. Stomatal responses to increased CO2: implication from the plant to the global scale. Plant Cell and Environment 18:1214-1225.
Forney, C.F. and P.J. Breen. 1985. Dry-matter partitioning and assimilation in fruiting and deblossomed strawberry. J. Amer. Soc. Hort. Sci. 110:181-185.
Hunt, S. 2003. Measurements of photosynthesis and respiration in plants. Physiologia Plantarum 117:314-325.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1979. Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol. 63:542-547.
Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70:1044-1048.
Kadir, S., G. Sidhu, and K. Al-Khatib. 2006. Strawberry (Fragaria xananassa Duch.) growth and productivity as affected by temperature. HortScience 41:1423-1430.
Keutgen, N., K. Chen, and F. Lenz. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 150:395-400.
Klamkowski, K., M. Sekrecka, H. Fonyodi, and W. Treder. 2006. Changes in the rate of gas exchange, water consumption and growth in strawberry plants infested with the two-spotted spider mite. Journal of Fruit and Ornamental Plant Research 14:155-162.
Lapre, L.F., F.V. Sances, N.C. Toscano, E.R. Oatman, V. Voth, and M.W. Johnson. 1982. The effects of acaricides on the physiology, growth, and yield of strawberries. J. Econ. Entomol. 75:616-619.
Phillips, N. and B.J. Bond. 1999. A micro-power precision amplifier for converting the output of light sensors to a voltage readable by miniature data loggers. Tree Physiol. 19:547-549.
Poni, S., E. Magnanini, and B. Rebucci. 1997. An automated chamber system for measurements of whole-vine gas exchange. HortScience 32:64-67.
Sances, F.V., J.A. Wyman, I.P. Ting, R.A. Vansteenwyk, and E.R. Oatman. 1981. Spider-mite interactions with photosynthesis, transpiration and productivity of strawberry. Environmental Entomology 10:442-448.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986a. Net photosynthesis, dark respiration, stomatal conductance, specific leaf weight, and chlorophyll content of strawberry plants as influenced by fruiting. J. Amer. Soc. Hort. Sci. 111:82-86.
Schaffer, B., J.A. Barden, and J.M. Williams. 1986b. Whole plant photosynthesis and dry-matter partitioning in fruiting and deblossomed day-neutral strawberry plants. J. Amer. Soc. Hort. Sci. 111:430-433.
Tabatabaei, S.J., L.S. Fatemi, and E. Fallahi. 2006. Effect of ammonium: Nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry. J. Plant Nutr. 29:1273-1285.
Trumble, J.T., W. Carson, H. Nakakihara, and V. Voth. 1988. Impact of pesticides for tomato fruitworm (Lepidoptera, noctuidae) suppression on photosynthesis, yield, and nontarget arthropods in strawberries. J. Econ. Entomol. 81:608-614.
Turechek, W.W., M.C. Heidenreich, A.N. Lakso, and M.P. Pritts. 2007. Estimation of the impact of leaf scorch on photosynthesis and 'physiological-lesion' size in strawberry. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 29:159-165.
Weiss, I., Y. Mizrahi, and E. Raveh. 2009. Chamber response time: A neglected issue in gas exchange measurements. Photosynthetica 47:121-124.

4. 5. Reference
Francesconi, A.H.D., A.N. Lakso, J.P. Nyrop, J. Barnard, and S.S. Denning. 1996. Carbon balance as a physiological basis for the interactions of European red mite and crop load on 'Starkrimson Delicious' apple trees. J. Amer. Soc. Hort. Sci. 121:959-966.
Klamkowski, K., M. Sekrecka, H. Fonyodi, and W. Treder. 2006. Changes in the rate of gas exchange, water consumption and growth in strawberry plants infested with the two-spotted spider mite. J. Fruit Ornam. Plant Res. 14:155-162.
Lakso, A.N., G.B. Mattii, J.P. Nyrop, and S.S. Denning. 1996. Influence of European Red Mite on leaf and whole-canopy carbon dioxide exchange, yield, fruit size, quality, and return cropping in 'Starkrimson Delicious' apple trees. J. Amer. Soc. Hort. Sci. 121:954-958.
Lapre, L.F., F.V. Sances, N.C. Toscano, E.R. Oatman, V. Voth, and M.W. Johnson. 1982. The effects of acaricides on the physiology, growth, and yield of strawberries. J. Econ. Entomol. 75:616-619.
Motoba, K., T. Suzuki, and M. Uchida. 1992. Effect of a new acaricide, fenpyroximate, on energy metabolism and mitochondrial morphology in adult female Tetranychus urticae (two-spotted spider mite). Pest. Biochem. Physiol. 43:37-44.
Sances, F.V., J.A. Wyman, I.P. Ting, R.A. Vansteenwyk, and E.R. Oatman. 1981. Spider-mite interactions with photosynthesis, transpiration and productivity of strawberry. Environ. Entomol. 10:442-448.
Trumble, J.T., W. Carson, H. Nakakihara, and V. Voth. 1988. Impact of pesticides for tomato fruitworm (Lepidoptera, noctuidae) suppression on photosynthesis, yield, and nontarget arthropods in strawberries. J. Econ. Entomol. 81:608-614.
Walsh, D.B., F.G. Zalom, and D.V. Shaw. 1998. Interaction of the twospotted spider mite (Acari : Tetranychidae) with yield of day-neutral strawberries in California. J. Econ. Entomol. 91:678-685.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64887-
dc.description.abstract調查田間的植物生理表現,可協助研究者判定田間環境,如光照強度或溫度,與栽培管理對於作物生長與產量之影響。測量草莓(Fragaria ×ananassa Duch.)之全樹冠氣體交換率為本研究目的之一,故設計出一擁有透明樹冠葉箱之可攜式全樹冠氣體交換系統。透明樹冠葉箱使得穿透之日光強度下降17%,而藉由調整系統內空氣流速,使得氣流有足夠時間與草莓植株進行氣體交換,並帶走累積於樹冠葉箱之多餘熱能,此一設備可獲得草莓植株生長量與¬二氧化碳及水氣交換率之良好相關性。本研究並調查於北台灣盛行之塑膠棚栽培系統,對於草莓生長與全株氣體交換之影響。塑膠棚栽培系統使得日照強度下降30%,造成 ‘豐香’草莓全樹冠光合作用率減少30%。於產季後半季時,植株葉面積減少35%,並由於日照強度不足使得草莓植株乾物重下降60%。此研究另調查蟎類藥劑fenpyroximate對於草莓生長與葉片氣體交換之影響,以水溶液濃度為0、1及2 ml•l-1之5%fenpyroxmate噴施於‘豐香’草莓葉片進行試驗。草莓葉片淨光合作用會於蟎類藥劑fenpyroximate噴施一日後暫時上升,但fenpyroximate對於草莓葉片生長與花朵數量無顯著性影響。這些結果指出,於塑膠棚之日照強度降低,可能導致草莓產量下降。而於非有機生產之草莓園,蟎類藥劑fenpyroximate於正常使用濃度下,因不會對植株造成永久性傷害,仍為有效之蟎類控制方法。zh_TW
dc.description.abstractInvestigation of plant physiology performances in fields could assist researchers to evaluate the effects of environment condition and cultural practices on crop growth and yield. To measure whole canopy gas exchange of strawberry (Fragaria ×ananassa Duch.) plants, we designed a portable whole canopy gas exchange system with clear canopy chambers. The clear canopy chambers allow sun light penetration with 17% decrease of light intensity. Air flow was adjusted to maintain a good retention time for gas exchange while minimizing heat accumulation in the chamber. Good correlations among plant size, CO2, and H2O exchange were obtained. We also investigated strawberry growth and whole plant photosynthesis under the plastic tunnel system which is popular in Northern Taiwan. The plastic tunnel system caused 30% declination of light intensity and resulted in 30% reduction of whole canopy photosynthesis in ‘Toyonoka’ strawberries. Consequently, plants under plastic tunnels had 35% less total leaf area and 60% less dry weight then the control. In the third part of this research, we assessed the effects of miticide fenpyroximate on growth and leaf gas exchange in strawberries. 5% fenpyroximate at the concentrations 0, 1, or 2 ml•l-1 were applied to ‘Toyonoka’ strawberry leaves. The leaf net photosynthesis would increase temporarily one day after fenpyroximate application, but there was no significant influence of fenpyroximate on leaf and flower growth. These results showed that insufficient of light intensity may cause strawberry yield loss, but fenpyroximate is still a good method in non-organic production systems for strawberries protection in the proper application rate which did not injury crops permanently.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:05:27Z (GMT). No. of bitstreams: 1
ntu-101-R99628103-1.pdf: 3306740 bytes, checksum: 2de295c4841a0ed2fe36b63a1468960a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Content
致謝 i
摘要 ii
Abstract iii
Table of Content iv
List of Table ix
List of Figure x
Chapter One General introduction – Literature reviews and hypothesis 1
1. 1. Introduction – photosynthesis researches of single leaf and whole canopy 1
1. 2. Exogenous Factors affecting strawberry photosynthesis 2
1. 2. 1. Light 2
1. 2. 2. Temperature 3
1. 2. 3. Water 3
1. 2. 4. Nutrient 3
1. 2. 5. CO2 4
1. 2. 6. Mite invasion and agrochemicals 4
1. 3. Whole canopy gas exchange chamber system 7
1. 3. 1. Methods of measuring photosynthesis 7
1. 3. 2. Up scaling from a leaf to a canopy 11
1. 3. 3. Construction of whole canopy gas exchange system 11
1. 3. 4. Analysis of gas exchange parameter 13
1. 4. Hypothesis 14
1. 4. 1. Plastic tunnel system reduces light and whole plant photosynthesis in strawberry cultivation 14
1. 4. 2. Miticides affect strawberry photosynthesis and growth 15
1. 5. References 16
Chapter Two A whole canopy gas exchange system for strawberries 20
Abstract 20
Additional index words 21
2. 1. Introduction 21
2. 2. Material and methods 22
2. 2. 1. The design of the whole canopy gas exchange system 22
2. 2. 2. The canopy chamber 23
2. 2. 3. Gas flow through the system 23
2. 2. 4. Data acquirement and whole canopy gas exchange calculation 28
2. 2. 5. Plant materials 30
2. 2. 6. Leaf area analysis 31
2. 3. Result and discussion 32
2. 3. 1. Chamber effects on canopy microclimate 32
2. 3. 2. The examination of whole canopy gas exchange system 37
2. 3. 3. The leaf area and the whole canopy gas exchange of ‘Toyonoka’ strawberries 39
2. 4. Conclusion 43
2. 5. Reference 44
Chapter Three The plastic tunnel system reduces light and whole plant photosynthesis in strawberry cultivation 46
Abstract 46
Additional index words 46
3. 1. Introduction 47
3. 2. Material and methods 48
3. 2. 1. The whole canopy gas exchange measurement 48
3. 2. 2. Plant material 49
3. 2. 3. The plastic tunnel system for cultivation 50
3. 2. 4. Leaf area analysis 51
3. 2. 5. Plants fresh and dry weight 52
3. 3. Result and discussion 52
3. 3. 1. The plastic tunnel systems decline light intensity and whole canopy gas exchange of ‘Toyonoka’ strawberries 52
3. 3. 2. The light intensity reduction inhibits the growth of ‘Toyonoka’ strawberries 60
3. 4. Conclusion 74
3. 5. Reference 75
Chapter Four The effect of miticide fenpyroximate on ‘Toyonoka’ strawberries growth and photosynthesis 77
Abstract 77
Additional index words 77
4. 1. Introduction 78
4. 2. Material and methods 79
4. 2. 1. Plant material 79
4. 2. 2. Miticides application 80
4. 2. 3. Leaf gas exchange 81
4. 2. 4. Leaf area analysis 81
4. 3. Result and discussion 82
4. 3. 1. The effects of fenpyroximate on ‘Toyonoka’ strawberries leaf gas exchange 82
4. 3. 2. The effects of fenpyroximate on ‘Toyonoka’ strawberries growth 94
4. 4. Conclusion 98
4. 5. Reference 99
Appendix 100
 
List of Table
Table 1. The examination of whole canopy gas exchange system with an empty canopy chamber. 38

 
List of Figure
Fig. 2. 1. Schematic configuration of the whole canopy gas exchange system. 25
Fig. 2. 2. The design of the canopy chamber. 26
Fig. 2. 3. The design of the tubing for air flow. 27
Fig. 2. 4. Diurnal change of photosynthetically active radiation (PAR) of the ambient and inside a chamber. 34
Fig. 2. 5. The relation of photosynthetically active radiation (PAR) between the ambient and inside a chamber. 35
Fig. 2. 6. The relation of temperature (°C) between the ambient and inside a chamber. 36
Fig. 2. 7. Whole-canopy net CO2 exchange rate (NCER) photosynthesis and total leaf area of ‘Toyonoka’ strawberries. 41
Fig. 2. 8. Whole-canopy transpiration and total leaf area of ‘Toyonoka’ strawberries. 42
Fig. 3. 1. The relation of photosynthetically active radiation (PAR) between the plastic tunnel system and the natural sun light. 55
Fig. 3. 2. Whole-canopy net CO2 exchange rate (NCER) of ‘Toyonoka’ strawberries in response to light intensities at 15°C~20°C temperature range. 56
Fig. 3. 3. Whole-canopy net CO2 exchange rate (NCER) of ‘Toyonoka’ strawberries in response to light intensities at 20°C~25°C temperature range. 57
Fig. 3. 4. Whole-canopy transpiration of ‘Toyonoka’ strawberries in response to light intensities at 15°C~20°C temperature range. 58
Fig. 3. 5. Whole-canopy transpiration of ‘Toyonoka’ strawberries in response to light intensities at 20°C~25°C temperature range. 59
Fig. 3. 6. Leaf area development of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 63
Fig. 3. 7. Leaf number of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 64
Fig. 3. 8. Leaf fresh weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 65
Fig. 3. 9. Crown fresh weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 66
Fig. 3. 10. Aboveground fresh weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 67
Fig. 3. 11. Root fresh weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 68
Fig. 3. 12. Leaf dry weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 69
Fig. 3. 13. Crown dry weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 70
Fig. 3. 14. Aboveground dry weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 71
Fig. 3. 15. Root dry weight of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 72
Fig. 3. 16. Flower number of ‘Toyonoka’ strawberries grown in open field and in a plastic tunnel system. 73
Fig. 4. 1. ‘Toyonoka’ strawberries leaf photosynthesis after fenpyroximate treatments. 85
Fig. 4. 2. Variations of ‘Toyonoka’ strawberry leaf photosynthesis before and one day after fenpyroximate treatments. 86
Fig. 4. 3. ‘Toyonoka’ strawberries leaf transpiration after fenpyroximate treatments. 87
Fig. 4. 4. Variations of ‘Toyonoka’ strawberry leaf transpiration before and one day after fenpyroximate treatments. 88
Fig. 4. 5. ‘Toyonoka’ strawberries leaf stomatal conductance after fenpyroximate treatments. 89
Fig. 4. 6. Variations of ‘Toyonoka’ strawberry leaf stomatal conductance before and one day after fenpyroximate treatments. 90
Fig. 4. 7. ‘Toyonoka’ strawberries leaf intercellular CO2 concentration after fenpyroximate treatments. 91
Fig. 4. 8. Variations of ‘Toyonoka’ strawberry leaf intercellular CO2 concentration before and one day after fenpyroximate treatments. 92
Fig. 4. 9. Leaf photosynthesis light curve of ‘Toyonoka’ strawberries after fenpyroximate treatments. 93
Fig. 4. 10. Leaf area development of ‘Toyonoka’ strawberries after fenpyroximate treatments. 95
Fig. 4. 11. Leaf number of ‘Toyonoka’ strawberries after fenpyroximate treatments. 96
Fig. 4. 12. Flower number of ‘Toyonoka’ strawberries after fenpyroximate treatments. 97
Appendix 2. 1. The relationship between middle leaf length and leaf area of ‘Toyonoka’ strawebrries 100
Appendix 2. 2. A strawberry was covered with a canopy chamber in the field. 101
Appendix 2. 3. The whole canopy gas exchange system in the field. 102
Appendix 2. 4. The whole canopy gas exchange system in the field. 103
Appendix 2. 5. The gas flow module of the whole canopy gas exchange system. 104
Appendix 2. 6. The cylinder canopy chambers of three different sizes. 105
Appendix 2. 7. The flow meter of the whole canopy gas exchange system. 106
Appendix 2. 8. The data logger, the infra-red gas analyzer (IRGA), and the batteries of the whole canopy gas exchange system. 107
Appendix 2. 9. The quantum sensor and the converter of the whole canopy gas exchange system. 108
Appendix 3. 1. The relationship between middle leaf length and leaf area of ‘Toyonoka’ strawebrries 109
Appendix 3. 2. Mean air temperature of the experimental site at Horticultural Experimental Farm, College of Bio-Resource and Agriculture of National Taiwan University. 110
Appendix 3. 3. Mean relative humidity of the experimental site at Horticultural Experimental Farm, College of Bio-Resource and Agriculture of National Taiwan University. 111
Appendix 3. 4. Mean global solar radiation in Taipei and Miaoli 112
Appendix 3. 5. ‘Toyonoka’ strawberries under open field (Sun light) and plastic tunnel system (Plastic shade). 113
Appendix 3. 6. Strawberry plants under open field and plastic tunnel system. 114
Appendix 4. 1. The relationship between middle leaf length and leaf area of ‘Toyonoka’ strawebrries 115
Appendix 4. 2. Mean air temperature of the experimental site at Horticultural Experimental Farm, College of Bio-Resource and Agriculture of National Taiwan University. 116
Appendix 4. 3. Relative humidity of the experimental site at Horticultural Experimental Farm, College of Bio-Resource and Agriculture of National Taiwan University. 117
dc.language.isoen
dc.subject樹冠葉箱zh_TW
dc.subject蒸散作用zh_TW
dc.subject?類藥劑zh_TW
dc.subject塑膠棚栽培系統zh_TW
dc.subject葉片面積面積zh_TW
dc.subjectplastic tunnel systemen
dc.subjectmiticideen
dc.subjecttranspirationen
dc.subjectcanopy chamberen
dc.subjectleaf areaen
dc.title全株氣體交換系統及田間管理對草莓光合作用之影響zh_TW
dc.titleA whole-canopy gas exchange system and field managements effects on strawberry whole-canopy photosynthesisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝正義(Cheng-I Hsieh),張哲嘉(Jer-Chia Chang)
dc.subject.keyword塑膠棚栽培系統,?類藥劑,蒸散作用,樹冠葉箱,葉片面積面積,zh_TW
dc.subject.keywordplastic tunnel system,miticide,transpiration,canopy chamber,leaf area,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved