請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余佳慧(Linda Chia- Hui Yu) | |
| dc.contributor.author | Shin Chen | en |
| dc.contributor.author | 陳馨 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:05:25Z | - |
| dc.date.available | 2015-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | 1. Farquhar, M.G. and G.E. Palade, Junctional complexes in various epithelia. J Cell Biol, 1963. 17: p. 375-412.
2. Krawisz, J.E., P. Sharon, and W.F. Stenson, Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology, 1984. 87(6): p. 1344-50. 3. McConnico, R.S., et al., Myeloperoxidase activity of the large intestine in an equine model of acute colitis. Am J Vet Res, 1999. 60(7): p. 807-13. 4. Ley, R.E., D.A. Peterson, and J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006. 124(4): p. 837-848. 5. O'Hara, A.M. and F. Shanahan, The gut flora as a forgotten organ. EMBO Rep, 2006. 7(7): p. 688-93. 6. Holzapfel, W.H., et al., Overview of gut flora and probiotics. Int J Food Microbiol, 1998. 41(2): p. 85-101. 7. Hawrelak, J.A. and S.P. Myers, The causes of intestinal dysbiosis: a review. Altern Med Rev, 2004. 9(2): p. 180-97. 8. Antonopoulos, D.A., et al., Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun, 2009. 77(6): p. 2367-75. 9. Hill, D.A., et al., Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol, 2010. 3(2): p. 148-58. 10. Sekirov, I., et al., Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun, 2008. 76(10): p. 4726-36. 11. Croswell, A., et al., Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun, 2009. 77(7): p. 2741-53. 12. Dethlefsen, L. and D.A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1: p. 4554-61. 13. Bengmark, S., Econutrition and health maintenance--a new concept to prevent GI inflammation, ulceration and sepsis. Clin Nutr, 1996. 15(1): p. 1-10. 14. Mayer, E.A., et al., V. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 2001. 280(4): p. G519-24. 15. Mayer, E.A., The neurobiology of stress and gastrointestinal disease. Gut, 2000. 47(6): p. 861-9. 16. Konturek, P.C., T. Brzozowski, and S.J. Konturek, Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol, 2011. 62(6): p. 591-9. 17. Larauche, M., A. Mulak, and Y. Tache, Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study. J Neurogastroenterol Motil, 2011. 17(3): p. 213-34. 18. Cameron, H.L. and M.H. Perdue, Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther, 2005. 314(1): p. 214-20. 19. Santos, J., et al., Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol, 2000. 278(6): p. G847-54. 20. Santos, J., et al., Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut, 2001. 48(5): p. 630-6. 21. Hong, S., et al., Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut, 2009. 58(2): p. 202-10. 22. Bradesi, S., et al., Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol, 2005. 289(1): p. G42-53. 23. Larauche, M., et al., Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol, 2008. 294(4): p. G1033-40. 24. Ibeakanma, C., et al., Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology, 2011. 141(6): p. 2098-2108 e5. 25. O'Mahony, S.M., et al., Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl), 2011. 214(1): p. 71-88. 26. Chung, E.K., et al., Neonatal maternal separation enhances central sensitivity to noxious colorectal distention in rat. Brain Res, 2007. 1153: p. 68-77. 27. Sengupta, J.N., Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol, 2009(194): p. 31-74. 28. Robinson, D.R. and G.F. Gebhart, Inside information: the unique features of visceral sensation. Mol Interv, 2008. 8(5): p. 242-53. 29. Sugiura, Y., et al., Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol, 1993. 332(3): p. 315-25. 30. Wang, G., B. Tang, and R.J. Traub, Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol, 2005. 94(6): p. 3788-94. 31. Price, D.D., Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv, 2002. 2(6): p. 392-403, 339. 32. Vanegas, H. and H.G. Schaible, Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev, 2004. 46(3): p. 295-309. 33. Jones, M.P., et al., Brain-gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol Motil, 2006. 18(2): p. 91-103. 34. Mayer, E.A. and K. Tillisch, The brain-gut axis in abdominal pain syndromes. Annu Rev Med, 2011. 62: p. 381-96. 35. Tougas, G., The autonomic nervous system in functional bowel disorders. Gut, 2000. 47 Suppl 4: p. iv78-80; discussion iv87. 36. Cryan, J.F. and S.M. O'Mahony, The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil, 2011. 23(3): p. 187-92. 37. Bielefeldt, K., J.A. Christianson, and B.M. Davis, Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil, 2005. 17(4): p. 488-99. 38. Knowles, C.H. and Q. Aziz, Basic and clinical aspects of gastrointestinal pain. Pain, 2009. 141(3): p. 191-209. 39. Rhee, S.H., C. Pothoulakis, and E.A. Mayer, Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol, 2009. 6(5): p. 306-14. 40. Collins, S.M. and P. Bercik, The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009. 136(6): p. 2003-14. 41. Drossman, D.A., et al., AGA technical review on irritable bowel syndrome. Gastroenterology, 2002. 123(6): p. 2108-31. 42. Manabe, N., et al., Pathophysiology underlying irritable bowel syndrome--from the viewpoint of dysfunction of autonomic nervous system activity. J Smooth Muscle Res, 2009. 45(1): p. 15-23. 43. Saito, Y.A., P. Schoenfeld, and G.R. Locke, 3rd, The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol, 2002. 97(8): p. 1910-5. 44. Chang, F.Y., C.L. Lu, and T.S. Chen, The current prevalence of irritable bowel syndrome in Asia. J Neurogastroenterol Motil, 2010. 16(4): p. 389-400. 45. Lu, C.L., et al., Current patterns of irritable bowel syndrome in Taiwan: the Rome II questionnaire on a Chinese population. Aliment Pharmacol Ther, 2003. 18(11-12): p. 1159-69. 46. Quigley, E.M., et al., A global perspective on irritable bowel syndrome: a consensus statement of the World Gastroenterology Organisation Summit Task Force on irritable bowel syndrome. J Clin Gastroenterol, 2012. 46(5): p. 356-66. 47. Bouin, M., et al., Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology, 2002. 122(7): p. 1771-7. 48. Mertz, H., et al., Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology, 1995. 109(1): p. 40-52. 49. Posserud, I., et al., Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut, 2004. 53(8): p. 1102-8. 50. Ritchie, J., Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut, 1973. 14(2): p. 125-32. 51. Coffin, B., et al., Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut, 2004. 53(10): p. 1465-70. 52. Kellow, J.E. and S.F. Phillips, Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology, 1987. 92(6): p. 1885-93. 53. Mayer, E.A. and G.F. Gebhart, Basic and clinical aspects of visceral hyperalgesia. Gastroenterology, 1994. 107(1): p. 271-93. 54. Bardhan, K.D., et al., A double-blind, randomized, placebo-controlled dose-ranging study to evaluate the efficacy of alosetron in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther, 2000. 14(1): p. 23-34. 55. Ford, A.C. and P.O. Vandvik, Irritable bowel syndrome. Clin Evid (Online), 2012. 2012. 56. Dunlop, S.P., et al., Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol, 2005. 3(4): p. 349-57. 57. Buhner, S., et al., Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology, 2009. 137(4): p. 1425-34. 58. Barbara, G., et al., Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology, 2007. 132(1): p. 26-37. 59. Barbara, G., et al., Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr, 2009. 48 Suppl 2: p. S95-7. 60. Chang, F.Y. and C.L. Lu, The clinical significances of irritable bowel syndrome in Taiwan. J Gastroenterol Hepatol, 2011. 26 Suppl 3: p. 102-5. 61. Mach, T., The brain-gut axis in irritable bowel syndrome--clinical aspects. Med Sci Monit, 2004. 10(6): p. RA125-31. 62. Spiller, R.C., et al., Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut, 2000. 47(6): p. 804-811. 63. van der Veek, P.P., et al., Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am J Gastroenterol, 2005. 100(11): p. 2510-6. 64. Liebregts, T., et al., Immune activation in patients with irritable bowel syndrome. Gastroenterology, 2007. 132(3): p. 913-20. 65. O'Mahony, L., et al., Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology, 2005. 128(3): p. 541-51. 66. Stark, D., et al., Irritable bowel syndrome: a review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol, 2007. 37(1): p. 11-20. 67. Dunlop, S.P., et al., Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol, 2006. 101(6): p. 1288-94. 68. Park, J.H., et al., The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome. Gut Liver, 2009. 3(3): p. 174-9. 69. Posserud, I., et al., Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut, 2007. 56(6): p. 802-8. 70. Lyra, A., et al., Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol, 2009. 15(47): p. 5936-45. 71. Chassard, C., et al., Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther, 2012. 35(7): p. 828-38. 72. Fava, G.A. and L. Pavan, Large bowel disorders. I. Illness configuration and life events. Psychother Psychosom, 1976. 27(2): p. 93-9. 73. Drossman, D.A., et al., Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction. Gastroenterology, 1982. 83(3): p. 529-34. 74. Chitkara, D.K., et al., Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol, 2008. 103(3): p. 765-74; quiz 775. 75. Agata Mulak, M.L.a.Y.T., Modulation of Visceral Pain by Stress: Implications in Irritable Bowel Syndrome. 2012. 76. Virginia Alun-Jones1, A.J.W., J. O. Hunter and R. E. Robinson, The Aetiological Role of Antibiotic Prophylaxis with Hysterectomy in Irritable Bowel Syndrome. Journal of Obstetrics & Gynaecology, 1984. 5(1): p. S22-S23. 77. Mendall, M.A. and D. Kumar, Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol, 1998. 10(1): p. 59-62. 78. Maxwell, P.R., et al., Antibiotics increase functional abdominal symptoms. Am J Gastroenterol, 2002. 97(1): p. 104-8. 79. Longstreth, G.F., et al., Characteristics of patients with irritable bowel syndrome recruited from three sources: implications for clinical trials. Aliment Pharmacol Ther, 2001. 15(7): p. 959-64. 80. Neal, K.R., J. Hebden, and R. Spiller, Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ, 1997. 314(7083): p. 779-82. 81. Wang, L.H., X.C. Fang, and G.Z. Pan, Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut, 2004. 53(8): p. 1096-101. 82. Moss-Morris, R. and M. Spence, To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med, 2006. 68(3): p. 463-9. 83. McKendrick, M.W. and N.W. Read, Irritable bowel syndrome--post salmonella infection. J Infect, 1994. 29(1): p. 1-3. 84. Mearin, F., et al., Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology, 2005. 129(1): p. 98-104. 85. Soyturk, M., et al., Irritable bowel syndrome in persons who acquired trichinellosis. Am J Gastroenterol, 2007. 102(5): p. 1064-9. 86. Drossman, D.A., Mind over matter in the postinfective irritable bowel. Gut, 1999. 44(3): p. 306-7. 87. Gwee, K.A., et al., Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet, 1996. 347(8995): p. 150-153. 88. Spiller, R. and K. Garsed, Postinfectious irritable bowel syndrome. Gastroenterology, 2009. 136(6): p. 1979-1988. 89. Ohman, L. and M. Simren, Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol, 2010. 7(3): p. 163-73. 90. Faubert, G., Immune response to Giardia duodenalis. Clin Microbiol Rev, 2000. 13(1): p. 35-54, table of contents. 91. Roxstrom-Lindquist, K., et al., Giardia immunity--an update. Trends Parasitol, 2006. 22(1): p. 26-31. 92. D'Anchino, M., D. Orlando, and L. De Feudis, Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect, 2002. 45(3): p. 169-72. 93. Nygard, K., et al., A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health, 2006. 6: p. 141. 94. Hanevik, K., et al., Persisting symptoms and duodenal inflammation related to Giardia duodenalis infection. J Infect, 2007. 55(6): p. 524-30. 95. Eckmann, L., Mucosal defences against Giardia. Parasite Immunol, 2003. 25(5): p. 259-70. 96. Li, E., et al., Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun, 2004. 72(11): p. 6642-9. 97. Davids, B.J., et al., Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J Immunol, 2006. 177(9): p. 6281-90. 98. Farthing, M.J., Giardiasis. Gastroenterol Clin North Am, 1996. 25(3): p. 493-515. 99. Scott, K.G., et al., Jejunal brush border microvillous alterations in Giardia muris-infected mice: role of T lymphocytes and interleukin-6. Infect Immun, 2000. 68(6): p. 3412-8. 100. Scott, K.G., L.C. Yu, and A.G. Buret, Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun, 2004. 72(6): p. 3536-42. 101. Buret, A.G., et al., Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology, 2002. 125(Pt 1): p. 11-9. 102. Tandon, B.N., et al., Mechanism of malabsorption in giardiasis: a study of bacterial flora and bile salt deconjugation in upper jejunum. Gut, 1977. 18(3): p. 176-81. 103. Jimenez, J.C., et al., Systemic and mucosal responses to oral administration of excretory and secretory antigens from Giardia intestinalis. Clin Diagn Lab Immunol, 2004. 11(1): p. 152-60. 104. Rakoff-Nahoum, S., et al., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 2004. 118(2): p. 229-41. 105. Keister, D.B., Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg, 1983. 77(4): p. 487-8. 106. Langford, T.D., et al., Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun, 2002. 70(1): p. 11-8. 107. Ness, T.J. and G.F. Gebhart, Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res, 1988. 450(1-2): p. 153-69. 108. Arvidsson, S., et al., Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. J Pain, 2006. 7(2): p. 108-18. 109. Gui, X., R.E. Carraway, and P.R. Dobner, Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats. Neuroscience, 2004. 126(4): p. 1023-32. 110. Diaz-Granados, N., et al., Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol, 2000. 156(6): p. 2169-77. 111. Bradesi, S., et al., Involvement of vasopressin 3 receptors in chronic psychological stress-induced visceral hyperalgesia in rats. Am J Physiol Gastrointest Liver Physiol, 2009. 296(2): p. G302-9. 112. Larauche, M., et al., Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: influence of surgery and postoperative single housing on visceromotor responses. Stress, 2010. 13(4): p. 343-54. 113. Santos, J., et al., Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut, 2001. 48(5): p. 630-636. 114. Posserud, I., et al., Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut, 2007. 56(6): p. 802-808. 115. Spiller, R. and K. Garsed, Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis, 2009. 41(12): p. 844-9. 116. Rakoff-Nahoum, S., et al., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 2004. 118(2): p. 229-241. 117. Uehara, A., et al., Meso-diaminopimelic acid and meso-lanthionine, amino acids specific to bacterial peptidoglycans, activate human epithelial cells through NOD1. J Immunol, 2006. 177(3): p. 1796-804. 118. Zareie, M., et al., Monocyte/macrophage activation by normal bacteria and bacterial products: implications for altered epithelial function in Crohn's disease. Am J Pathol, 2001. 158(3): p. 1101-9. 119. Clausen, M.R., Production and oxidation of short-chain fatty acids in the human colon: implications for antibiotic-associated diarrhea, ulcerative colitis, colonic cancer, and hepatic encephalopathy. Dan Med Bull, 1998. 45(1): p. 51-75. 120. Lizko, N.N., Stress and intestinal microflora. Nahrung, 1987. 31(5-6): p. 443-7. 121. Bailey, M.T. and C.L. Coe, Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol, 1999. 35(2): p. 146-55. 122. Neal, K.R., L. Barker, and R.C. Spiller, Prognosis in post-infective irritable bowel syndrome: a six year follow up study. Gut, 2002. 51(3): p. 410-3. 123. Thabane, M. and J.K. Marshall, Post-infectious irritable bowel syndrome. World J Gastroenterol, 2009. 15(29): p. 3591-6. 124. Robertson, L.J., et al., Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol, 2010. 26(2): p. 75-82. 125. Dizdar, V., O.H. Gilja, and T. Hausken, Increased visceral sensitivity in Giardia-induced postinfectious irritable bowel syndrome and functional dyspepsia. Effect of the 5HT3-antagonist ondansetron. Neurogastroenterol Motil, 2007. 19(12): p. 977-82. 126. Gwee, K.A., et al., The role of psychological and biological factors in postinfective gut dysfunction. Gut, 1999. 44(3): p. 400-6. 127. Dagci, H., et al., Protozoon infections and intestinal permeability. Acta Trop, 2002. 81(1): p. 1-5. 128. Scott, K.G., et al., Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology, 2002. 123(4): p. 1179-1190. 129. Gecse, K., et al., Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut, 2008. 57(5): p. 591-9. 130. Walters, B. and S.J. Vanner, Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol, 2005. 100(7): p. 1566-70. 131. Pimentel, M., E.J. Chow, and H.C. Lin, Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol, 2003. 98(2): p. 412-9. 132. Verdu, E.F., et al., Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut, 2006. 55(2): p. 182-90. 133. Cremonini, F. and A. Lembo, Rifaximin for the treatment of irritable bowel syndrome. Expert Opin Pharmacother, 2012. 13(3): p. 433-40. 134. Neufeld, K.M., et al., Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil, 2011. 23(3): p. 255-64, e119. 135. Sudo, N., et al., Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 2004. 558(Pt 1): p. 263-75. 136. Saggioro, A., Probiotics in the treatment of irritable bowel syndrome. J Clin Gastroenterol, 2004. 38(6 Suppl): p. S104-6. 137. Logan, A.C. and M. Katzman, Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses, 2005. 64(3): p. 533-8. 138. Bercik, P., et al., Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 2010. 139(6): p. 2102-2112 e1. 139. Bercik, P., et al., The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011. 141(2): p. 599-609, 609 e1-3. 140. Ren, T.H., et al., Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 2007. 292(3): p. G849-56. 141. Coutinho, S.V. and G.F. Gebhart, A role for spinal nitric oxide in mediating visceral hyperalgesia in the rat. Gastroenterology, 1999. 116(6): p. 1399-408. 142. Kuiken, S.D., et al., Possible role of nitric oxide in visceral hypersensitivity in patients with irritable bowel syndrome. Neurogastroenterol Motil, 2006. 18(2): p. 115-22. 143. Tjong, Y.W., et al., Role of neuronal nitric oxide synthase in colonic distension-induced hyperalgesia in distal colon of neonatal maternal separated male rats. Neurogastroenterol Motil, 2011. 23(7): p. 666-e278. 144. Cenac, N., et al., Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010. 59(4): p. 481-8. 145. Widmaier EP, R.H., Strang KT and Vander AJ, Vander, Sherman, & Luciano's human physiology : the mechanisms of body function, Boston, Editor. 2004, McGraw-Hill Higher Education. 146. Lacy, B., A 42-Year-Old Woman Presents for Second Opinion: Nonconstipation IBS -- A Case Study Approach. Medscape Education, 2011 147. http://www.dpd.cdc.gov/dpdx/HTML/Giardiasis.htm. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64886 | - |
| dc.description.abstract | 背景:腸躁症為一種功能性異常之腸胃道疾病,症狀包含腹脹、腹痛及腹瀉或便秘等,但是並無法檢測到腸道結構上的損傷或病原體的存在。遺傳因子、微生物或寄生蟲感染、抗生素的使用以及精神壓力等危險因子皆被懷疑參與腸躁症的致病機轉。近年來在腸躁症病人中發現腸道共生細菌增生、腸道通透性增加及低程度發炎現象等。過去動物實驗研究指出精神壓力會造成腹部疼痛增加以及造成腸道屏障功能缺損。本研究的目的在於探討抗生素引起之腸道共生菌叢失衡與梨形蟲感染是否會加劇精神壓力所引發的內臟高敏感性與腸道功能失調。
材料方法與結果:第一部分實驗,分別給予SPF BALB/c小鼠正常水(NW)或抗生素水(AW)10天,一部分小鼠在第10天犧牲作分析,另一部分小鼠則是移除飲水中抗生素後,給予每天1小時的避水壓力(WAS)或無處理(NH)為期10天。首先分析口服抗生素對腸道共生菌叢數目與腸道電生理參數之影響。飲用抗生素水10天之小鼠其體重下降33.29 ± 0.06 %,而移除抗生素後體重恢復。相較於飲用正常水,抗生素水處理使盲腸與大腸的需氧菌和厭氧菌總量顯著減少,而移除抗生素後總體細菌量則回升。同時發現抗生素處理造成小腸與大腸的迴路電流上升,暗示腸道離子分泌增加;dextran探針從腸腔面到漿液面的流量與腸道組織結構皆沒有改變,顯示飲用抗生素水後上皮屏障功能依然完好。接著探討抗生素引起之腸道共生菌叢失衡是否會加重精神壓力所引發的內臟高敏感性與腸道上皮屏障失能。首先觀察到受避水壓力刺激的小鼠,其血清中腎上腺皮質酮含量明顯增加,確定感受到精神壓力。低體積結直腸撐張刺激的內臟動器反應實驗中,只有AW-WAS組的內臟動器反應比NW-NH小鼠高,顯示抗生素加精神壓力的雙重因子會造成內臟痛覺異常。而高體積結直腸撐張刺激實驗中, NW-WAS、AW-NH和AW-WAS小鼠相較於NW-NH小鼠之反應都有顯著增加,顯示單一因子(抗生素或精神壓力)會造成內臟痛覺過度但無加成效果。細菌總量方面,NW-NH和NW-WAS小鼠之細菌量很接近,但AW-WAS組盲腸共生菌數目比AW-NH組更高,表示雙重因子下細菌回彈的程度更大,且有過度增生的現象。螢光原位雜合分析發現只有AW-WAS小鼠之小腸線窩有細菌入侵的現象。四個組別中,腸道組織型態皆正常且沒有觀察到細菌移位到肝臟或脾臟。腸道上皮功能指標(如迴路電流及dextran通透性)方面,AW-WAS 小鼠與NW-WAS小鼠無明顯差異。第二部分實驗將SPF C57BL/6小鼠灌食磷酸鹽緩衝液(PBS)或10e7之Giardia lamblia strain GS/M品系之滋養體後的第35天即Giardia後排除期,進行避水壓力(WAS)或無處理(NH)。在低體積結直腸撐張刺激的內臟動器反應實驗中,Giardia-NH和Giardia-WAS兩者與PBS-NH組相比都較高,而PBS-WAS與PBS-NH組相比無差異,顯示G. lamblia感染排除單一因子會造成痛覺異常。高體積結直腸撐張刺激實驗中,PBS-WAS和Giardia-WAS小鼠之反應皆比PBS-NH高,但Giardia-NH卻與PBS-NH無差異,顯示單一因子下精神壓力會造成痛覺過度而G. lamblia感染排除不會,且雙重因子對痛覺過度無加成效果。此外,Giardia-NH與Giardia-WAS小鼠之小腸通透性皆有上升但組織結構正常。雖然四個組別的腸道總體共生菌量相仿,但是Giardia-WAS小鼠之小腸有細菌入侵上皮細胞與固有層並伴隨腸道上皮細胞緊密連結ZO-1結構破壞與occludin片段化的現象。 結論:雙重因子組合(抗生素加精神壓力、後感染加精神壓力)都會引起內臟痛覺異常,但是對痛覺過度無加成效果。而雙重因子組合皆會造成腸道共生菌數目或位置的改變,因此推測可能與內臟痛覺敏感化有關。 | zh_TW |
| dc.description.abstract | Introduction: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorders characterized by symptoms such as bloating, abdominal pain, diarrhea and constipation, without structural abnormality and etiological agents. Risk factors such as genetic straits, microbial and parasitic infection, antibiotic usage and psychological stress have been long implicated in the pathogenesis of IBS. Enteric commensal overgrowth, intestinal permeability rise and low grade inflammation were recently identified in IBS patients. Previous animal studies have shown that psychological stress increases abdominal pain perception and causes intestinal barrier disruption. Aim: To investigate whether enteric dysbiosis by antibiotic usage and Giardia lamblia infection potentiates stress-induced visceral hypersensitivity and intestinal dysfunctions.
Methods and Results: In the first part, specific pathogen free BALB/c male mice drinking normal water (NW) or antibiotic water (AW) for 10 days were sacrificed immediately, or subsequently nonhandled (NH) or subjected to water avoidance stress (WAS) for 1h/day for 10 days after antibiotic removal. We assessed the effects of oral antibiotics on gut bacterial counts and electrophysiological parameters. Compared to mice drinking NW, the body weight of AW mice dropped 33.29 ± 0.06 % at the end of antibiotic treatment, and recovered to normal weight after antibiotic removal. The total aerobic and anaerobic bacterial counts in the cecum and colon were significantly decreased by antibiotic treatment, and bacterial rebound to normal levels after antibiotic removal. Increased short-circuit current was found in the jejunal and colonic tissues in AW mice compared to NW mice, suggesting increased ion secretion after antibiotic treatment. Neither change in mucosal-to-serosal dextran flux nor histological structural damage was seen in intestinal tissues of AW mice compared to NW mice, suggesting that the epithelial barrier remains intact following antibiotic usage. Then we investigate whether antibiotic dysbiosis potentiates stress-induced visceral hypersensitivity and intestinal epithelial dysfunction. Mice drinking NW and AW were subjected to NH or WAS after antibiotic withdrawal. Perception of psychological stress was confirmed by increased serum corticosterone levels following WAS. The visceromoter responses (VMR) caused by low volume of colorectal distension (CRD) was statistically increased in AW-WAS compared to NW-NH mice, indicating that the combination of antibiotic usage and psychological stress may synergistically trigger allodynia. Moreover, VMR induced by high volume of CRD were augmented in NW-WAS, AW-WAS and AW-NH mice compared to NW-NH mice, suggesting that psychological stress alone causes hyperalgesia but no synergistic effect with antibiotics. The intestinal bacterial counts were similar between NW-NH and NW-WAS mice, whereas statistically higher numbers were found in the cecum of AW-WAS mice compared to that of NW-WAS mice, suggesting an exaggerated bacterial rebound by antibiotic withdrawal upon exposure to psychological stress. Fluorescence in situ hybridization (FISH) revealed bacterial invasion to jejunal crypts in AW-WAS mice only but not in other groups. All four groups of mice displayed normal intestinal histological structures with no sign of bacterial translocation to liver and spleen. No difference in intestinal epithelial functions (i.e. short-circuit current and dextran permeability) were seen between NW-WAS and AW-WAS mice. In the second part, specific pathogen free C57BL/6 male mice were inoculated with phosphate-buffered saline (PBS) or 10e7 trophozoites of Giardia lamblia strain GS/M. On post-infection day 35 in which the trophozoites cannot be detected in the small intestines (post-clearance phase), mice were subjected to NH or WAS. Compared to PBS-NH mice, the VMR caused by low volume of CRD was increased in Giardia-NH and Giardia-WAS groups but not PBS-WAS groups, indicating that post-giardiasis alone may trigger allodynia. Moreover, the VMR induced by high volume of CRD was increased in PBS-WAS and Giardia-WAS mice compared to PBS-NH groups, whereas no difference was seen between Giardia-NH and PBS-NH mice, suggesting that psychological stress but not Giardia infection causes hyperalgesia and the combination of two factors show no synergistic effects. Increased jejunal permeability was seen Giardia-NH and Giardia-WAS mice without histological structural change. Although the total bacterial numbers were comparable in the four groups, bacterial invasion to enterocytes and gut mucosa accompanied with structural disruption of tight junction ZO-1 and occludin was detected in small intestine of Giardia-WAS mice. Conclusions: The combinational risk factors (i.e. antibiotic usage plus psychological stress, and post-infection plus the latter) induced visceral hypersensitivity in the form of allodynia but showed no synergistic effects on hyperalgesia. Moreover, both combinations induced enteric bacterial dysbiosis, which may be involved in the mechanism of visceral hypersensitivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:05:25Z (GMT). No. of bitstreams: 1 ntu-101-R99441008-1.pdf: 11464361 bytes, checksum: 53ff96ed0277a2719a6c02ca6397db47 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書
致謝 I 中文摘要 II 英文摘要 IV 中英文縮寫名詞對照 VI 圖表目錄 XII 一、前言 1 1. 腸道組織之解剖構造 1 2. 腸道屏障功能 1 2.1. 物理性屏障 2 2.2. 化學性屏障 3 2.3. 免疫性屏障 3 3. 腸道常生細菌(intestinal commensal bacteria) 4 3.1. 腸道常生細菌 4 3.2. 抗生素引起腸道共生菌失衡(enteric dysbiosis) 4 4. 精神壓力(psychological stress)對腸道功能的影響 5 5. 內臟痛覺(visceral pain) 6 5.1. 上行內臟痛覺調控路徑(regulation of ascending visceral pain pathway) 6 5.2. 下行內臟痛覺調控路徑(regulation of descending visceral pain pathway) 7 5.3. 內臟高敏感性(visceral hypersensitivity) 7 6. 腦腸軸(brain-gut axis, BGA)和腦腸菌軸(brain-gut-microbiota axis, BGMA) 8 7. 腸躁症(irritable bowel syndrome, IBS) 9 7.1. 流行病學研究 9 7.2. 臨床研究 9 7.3. 危險因子探討 11 7.3.1. 精神壓力 11 7.3.2. 抗生素使用 12 7.3.3. 腸胃道感染和後感染性腸躁症(post infectious irritable bowel syndrome, PI-IBS) 12 8. 研究目的 14 二、材料與方法 15 1. 實驗動物 15 2. 實驗用藥物 15 3. 實驗寄生蟲 16 4. 精神壓力模式 (psychological stress model) 16 5. 實驗動物分組 17 6. 組織處理及實驗分析 19 6.1. 小鼠體重(body weight)分析 19 6.2. 腸道總細菌量(total bacteria)分析 19 6.3. 腸道黏膜細胞內吞細菌(mucosal endocytosed bacteria)分析 20 6.4. 腸道細菌轉移(bacterial translocation)分析 21 6.5. 利用Ussing chamber測量小鼠腸道組織電生理值和通透性 22 6.5.1. 腸道組織離子通透性(ion permeability)分析 22 6.5.2. 腸道組織大分子通透性(macromolecular permeability)分析 22 6.6. 小鼠血清中腎上腺皮質酮(corticosterone)之含量分析 23 6.7. 內臟動器反應(visceromotor response, VMR)分析 23 6.8. 腸道組織骨髓過氧化酶(myeloperoxidase, MPO)活性測定 24 6.9. 小鼠腸道組織細胞激素之表現量測試 25 6.10. 組織切片及染色 27 6.10.1. 石蠟包埋檢體之製備 27 6.10.2. 蘇木紫-伊紅染色(haematoxylin and eosin staining) 27 6.10.3. 螢光原位雜合(fluorescence in situ hybridization, FISH) 27 6.10.4. 冷凍包埋檢體的製備 28 6.10.5. 免疫螢光染色-緊密連結ZO-1 29 6.11. 西方轉漬法(western blotting) 29 6.11.1. 黏膜層蛋白質萃取 29 6.11.2. 蛋白質定量 29 6.11.3. 蛋白質電泳 30 6.11.4. 蛋白質分析 32 6.12. 統計方法 27 三、實驗結果 33 第一部份實驗、抗生素加避水壓力實驗 1. 口服抗生素對腸道功能之影響 33 1.1. 小鼠體重分析 33 1.2. 抗生素水處理對腸道總細菌量之影響 33 1.3. 抗生素水處理對腸道組織電生理值和通透性之影響 34 1.4. 抗生素水處理對腸道組織發炎指數之影響 35 1.4.1. 腸道組織TNFα與IL-12表現量測定 35 1.4.2. 腸道組織骨髓過氧化酶活性測定 35 1.5. 抗生素水處理對腸道組織型態之影響 35 2. 抗生素加避水壓力對腸道功能之影響 36 2.1. 避水壓力對小鼠血清中腎上腺皮質酮含量之影響 36 2.2. 小鼠體重分析 36 2.3. 抗生素加避水壓力對內臟動器反應之影響 37 2.4. 抗生素加避水壓力對腸道組織電生理值和通透性之影響 37 2.5. 抗生素加避水壓力對腸道總細菌量之影響 38 2.6. 抗生素加避水壓力對腸道組織型態之影響 38 2.7. 抗生素加避水壓力下腸道細菌之位置 39 2.8. 抗生素加避水壓力對腸道組織發炎指數之影響 39 2.8.1. 腸道組織TNFα與IL-12表現量測定 39 2.8.2. 腸道組織骨髓過氧化酶活性測定 39 2.9. 抗生素加避水壓力對腸道細菌轉移之影響 39 第二部份實驗、梨形蟲感染加避水壓力實驗 1. G. lamblia之感染與排除時間點 40 2. G. lamblia感染排除後加避水壓力對內臟動器反射之影響 40 3. G. lamblia感染排除後加避水壓力對腸道組織電生理值和通透性之影響 41 4. G. lamblia感染排除後加避水壓力對腸道總細菌量之影響 42 5. G. lamblia感染排除後加避水壓力之腸道黏膜細胞內吞細菌分析 43 6. G. lamblia感染排除後加避水壓力腸道細菌定位分析. 43 7. G. lamblia感染排除後加避水壓力對腸道組織型態之影響. 44 8. G. lamblia感染排除後加避水壓力之腸道緊密連結構造ZO-1分析 44 9. G. lamblia感染排除後加避水壓力對腸道組織發炎指數之影響 44 10. G. lamblia感染排除後加避水壓力對腸道組織黏膜層occludin之影響 45 11. G. lamblia感染排除後加避水壓力對腸道細菌轉移之影響 46 四、討論 47 表 56 圖 59 參考文獻 96 圖表目錄 表1、抗生素處理之腸道總細菌量中位數 56 表2、抗生素處理之腸道總細菌量平均數 57 表3、Giardia trophozoites在整段小腸中之數量 58 圖1、腸道管壁結構之縱向剖面圖 59 圖2、內臟痛覺傳遞與調控路徑神經解剖示意圖 60 圖3、腦腸軸 61 圖4、腸道共生菌與腦腸軸之整合 62 圖5、IBS之危險因子 63 圖6、G. lamblia生活史 64 圖7、抗生素處理之小鼠體重 65 圖8、抗生素處理之腸道總細菌量 66 圖9、抗生素處理之腸道電生理參數 67 圖10、抗生素處理之腸道大分子物質通透性 68 圖11、抗生素處理之腸道對腸道發炎與組織型態之影響 69 圖12、避水壓力對小鼠血清中腎上腺皮質酮含量之影響 70 圖13、抗生素加避水壓力處理之小鼠體重 71 圖14、抗生素加避水壓力處理之小鼠內臟動器反應測試 72 圖15、抗生素加避水壓力處理之腸道電生理參數 73 圖16、抗生素加避水壓力處理之腸道大分子物質通透性 75 圖17、抗生素加避水壓力處理之腸道總細菌量 76 圖18、抗生素加避水壓力處理對腸道組織型態之影響 77 圖19、抗生素加避水壓力處理下腸道細菌定位 78 圖20、抗生素加避水壓力處理度對腸道發炎之影響 80 圖21、抗生素加避水壓力處理對腸道細菌轉移之影響 81 圖22、G. lamblia感染排除後加避水壓力處理之小鼠內臟動器反應測試 82 圖23、G. lamblia感染排除後加避水壓力處理之腸道電生理參數 83 圖24、G. lamblia感染排除後加避水壓力處理之腸道大分子物質通透性 85 圖25、G. lamblia感染排除後加避水壓力處理之腸道總細菌量 86 圖26、G. lamblia感染排除後加避水壓力處理之腸道內吞細菌量與內吞細菌影像 87 圖27、G. lamblia感染排除後加避水壓力處理下腸道細菌定位 88 圖28、G. lamblia感染排除後加避水壓力處理對腸道組織型態之影響 89 圖29、G. lamblia感染排除後加避水壓力處理下緊密連結蛋白ZO-1之結構 90 圖30、G. lamblia感染排除後加避水壓力處理下小腸促發炎細胞激素表現量 91 圖31、G. lamblia感染排除後加避水壓力處理下小腸促發炎訊息傳遞分子磷酸化 92 圖32、G. lamblia感染排除後加避水壓力處理下骨髓過氧化酶活性 93 圖33、G. lamblia感染排除後加避水壓力處理下小腸緊密連結occludin蛋白表現 94 圖34、G. lamblia感染排除後加避水壓力處理對腸道細菌轉移之影響 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 腸躁症 | zh_TW |
| dc.subject | 精神壓力 | zh_TW |
| dc.subject | 腸道共生菌失衡 | zh_TW |
| dc.subject | 梨形蟲 | zh_TW |
| dc.subject | 內臟高敏感性 | zh_TW |
| dc.subject | 腸道屏障 | zh_TW |
| dc.subject | enteric dysbiosis | en |
| dc.subject | irritable bowel syndrome (IBS) | en |
| dc.subject | psychological stress | en |
| dc.subject | gut barrier | en |
| dc.subject | Giardia lamblia | en |
| dc.subject | visceral hypersensitivity | en |
| dc.title | 腸道共生菌叢失衡與精神壓力在內臟高敏感性與腸道功能失調中所扮演之角色探討 | zh_TW |
| dc.title | Roles of enteric dysbiosis and psychological stress in visceral hypersensitivity and intestinal dysfunctions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡元奮,盧俊良,倪衍玄,賈景山 | |
| dc.subject.keyword | 腸躁症,精神壓力,腸道共生菌失衡,梨形蟲,內臟高敏感性,腸道屏障, | zh_TW |
| dc.subject.keyword | irritable bowel syndrome (IBS),psychological stress,enteric dysbiosis,Giardia lamblia,visceral hypersensitivity,gut barrier, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 11.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
