請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64863完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒(Ting-Hsuan Hung) | |
| dc.contributor.author | Li Chang | en |
| dc.contributor.author | 張立 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:03:57Z | - |
| dc.date.available | 2013-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-06 | |
| dc.identifier.citation | 1. 李宜霞。2006。木瓜輪點病毒之 Real-time RT-PCR 定量偵測技術之研發與應用。 國立台灣大學植物病理與微生物學研究所碩士論文。110頁。
2. 林育宣。2004。柑橘破葉病毒系統之鑑別與快速偵測法之研發。國立台灣大學植物病理與微生物學研究所碩士論文。79頁。 3. 蔡美珍。1986。柑橘破葉病病毒之特性。國立台灣大學植物病蟲害研究所碩士論文。89頁。 4. 蔡佳欣、蘇鴻基、馮雅智、洪挺軒。2007。台灣地區柑橘黃龍病與萎縮病、破葉病毒田間複合感染之研究。植物病理學會刊。16: 121-169。 5. 西尾、川合昭、加藤幹雄。1984。中国産カンキツから分離された citrus tatter leaf virus とその抗血清の作製。日本植物病理学会報 50: 86(摘要)。 6. Ahlquist, P., and Janda, M. 1984. cDNA cloning and in vitro transcription of the complete Brome mosaic virus genome. Mol. Cell. Biol. 4: 2876-2882. 7. Bar-Joseph, M., and Martelli, G. P. 1991. Capilloviruses: Classification and Nomenclature of Viruses: 5th Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2: 339-340. 8. Boyer, J. C., and Haenni, A. L. 1993. Infectious transcripts and cDNA clones of RNA virus. Virology. 198: 415-426. 9. Broadbent, P. C., Dephoff, C., and Gilkeson. 1994: Detection of Citrus tatter leaf virus in Australia. Aust. Plant Pathol. 23: 20-24. 10. Calavan, E. C., Christiansen, D. W., and Roistacher, C. N. 1963. Symptoms associated with tatter-leaf virus infection of Troyer citrange rootstock. Plant Dis. Rep. 47: 971-975. 11. Carrington, J. C., Kasschau, K. D., Mahajan, S. K., and Schaad, M. C. 1996 Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8: 1669–1681. 12. Da Graca, J. V. 1977. Citrus tatter leaf virus in South African Meyer lemon. Citrus Subtrop. Fruit J. 529: 18. 13. Da Graca, J.V., and Skaria, M. 1996. Citrus tatter leaf virus in the Rio Grande Valley of South Texas. In: J. V. da Graca, P. Moreno and R. K. Yokomi (eds), Proc. 13th. Conference Int. Org. Citrus Virol. pp. 198. IOCV, Riverside. 14. Domier, L. L., Franklin, K. M., Hunt, A. G., Rhoads, R. E., and Shaw, J. G. 1989. Infectious in vitro transcripts from cloned cDNA of potyvirus, tobacco vein mottling virus. Proc. Natl. Acad. Sci. U S A. 86: 3509-3513. 15. Drake, J. W., and Holland, J. J. 1999. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96:13910-13913. 16. Duggal, R., Lahser, F.C., and Hall, T. C., 1994. Cis-acting sequences in the replication of plant viruses with plus-sense RNA genomes. Annu. Rev. 17. Esau, K. 1977. Anatomy of seed plants. NY: John Wiley and Sons. 550 pp 18. Fraser, L. R., and Broadbent, P. 1979. Virus and related diseases of citrus in New South Wales. Dept. Agric. NSW 52. 19. Fulton, R. W. 1966. Mechanical transmission of tatter leaf virus from cowpea to citrus. PhytoPathology 56: 575-576. 20. Galipienso, L., Navarro, L., Ballester-Olmos, J. F., Pina, J. A., Moreno, P., and Guerri, J.,2000. Host range and symptomatology of a graft-transmissible pathogen causing bud union crease of citrus on trifoliate rootstocks. Plant Pathol. 49: 308-314. 21. Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. 1991. Infectious in vitro RNA transcripts derived from cloned cDNA of the cucurbit potyvirus, zucchini yellow mosaic virus. J. Gen. Virol. 72: 2639-2643. 22. Garnsey, S. M. 1964. Detection of tatter leaf virus in Florida. Proc. Fla. State Hort. Soc. 77: 106-109. 23. Garnsey, S. M. 1970. Viruses in Florida's 'Meyer' lemon trees and their effects on other citrus. Proc. Fla. State Hort. Soc. 83: 66-71. 24. Garnsey, S. M. 1974. Mechanical transmission of a virus that produces tatter leaf symptoms in Citrus excclsa. In: Weathers, L. G. and M. Cohen (eds), Proc. 6th. Conference Int. Org. Citrus. Virol. pp. 137. IOCV, Riverside. 25. Garnsey, S. M., and J.W. Jones 1968. Relationship of symptoms to the Presence of Tatter-Leaf Virus in Several Citrus Hosts. In: Childs, J. F. L. (eds), Proc. 4th Conference Int. Org. Citrus. Virol. pp. 206-215. IOCV, Riverside. 26. Gowda, S., T. Satyanarayana, M. A. Ayllon, P. Moreno, R. Flores, and W. O. Dawson. 2003. The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50-64. 27. Hailstones, D. L., Bryant, K. L., Broadbent, P., and Zhou, C. 2000. Detection of Citrus tatter leaf virus with reverse transcription-polymerase chain reaction (RT-PCR). Aust. Plant Pathol. 29: 240-248. 28. Hirata, H., Lu, X., Yamaji, Y., Kagiwada, S., Ugaki, M., and Namba, S. 2003. A single silent substitution in the genome of Apple stem grooving virus causes symptom atten- uation. J. Gen. Virol. 84: 2579–2583. 29. Hirata, H., Yamaji, Y., Komatsu, K., Kagiwada, S., Oshima, K., Okano, Y., Takahashi, S., Ugaki, M., and Namba, S., 2010. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 pro-tein without variable and CP regions is sufficient for replication. Virus Res: 152, 1–9. 30. Komatsu, K., Hirata, H., Fukagawa, T., Yamaji, Y., Ishikawa, K., Adachi, T., Maejima, K., Hashimoto, M., and Namba, S. 2012. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Res: 167: 8–15. 31. Holmes, F. O. (1929). Local lesions in tobacco mosaic. Bot. Gaz. 87:39–70. 32. Hung, T. H., Wu, M. L., and Su, H. J. 2000. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. J. Phytopathol. 148: 469-475. 33. Inouye, N., Maeda, T., Mitsuhata, K. 1979. Citrus tatter leaf virus isolated from lily (Lilium longiflorum). Ann. Phytopathol. Soc. Japan 45: 712-720. 34. Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., and Malnoe, P. 1997. Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. J. Gen. Virol. 78: 3141-3145. 35. Jelkmann, W. 1995. Cherry virus A: cDNA cloning of dsRNA, nucleotide sequence analysis and serology reveal a new plant capillovirus in sweet cherry. J. Gen. Virol. 76: 2015–2024. 36. Jelkmann, W. 1995. Cherry virus A: cDNA cloning of dsRNA, nucleotide sequence analysis and serology reveal a new plant capillovirus in sweet cherry. J. Gen. Virol. 76: 2015-2024. 37. Kawai, A., Kobayashi, T., Tsukamoto, T., Dai, K., Kimishima, E., Kimura, S., and Goto, M. 1991. Production of monoclonal antibodies against citrus tatter leaf virus. Res. Bull. Plant Prot. Ser. Japan 27: 55-60. 38. Kawai, A., and Nishio, T. 1990. Detection of citrus tatter leaf virus by enzyme-linked immunosorbent assay ( ELISA). Ann. Phytopathol. Soc. Japan 56: 342-345. 39. Kawai, A., Tsukamoto, T., Namba, S., and Nishio, T. 1996. Citrus tatter leaf virus: A review of its properties and the development of a serological detection system. In. da Graca, J. V., P. Moreno and R. K. Yokomi (eds), Proc. 13th. Conference Int. Org. Citrus. Virol. pp. 339-342. IOCV, Riverside. 40. Ke, C., and Wu, R. J. 1991. Occurrence and distribution of citrus tatter leaf in Fujian, China. In. Brlansky, R. H., R. F. Lee, and L. W. Timmer (eds), Proc. 11th. Conf. Int. Org. Citrus. Virol. pp. 358-364. IOCV, Riverside. 41. Kim, K.-H. and Hemenway, C. 1996. The 59 nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J. Virol. 70: 5533–5540. 42. Leisner, S. M., Turgeon, R., and Howell, S. H. 1992. Long distance movement of Cauliflower mosaic virus in infected turnip plants. Mol. Plant-Microbe Interact. 5: 41-47. 43. Magome, H., Yoshikawa, N. Takahashi, T., Ito, T., and Miyakawa, T. 1997. Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology 87: 389-396. 44. Marais, L. J., and Lee, R. F. 1986. Citrange stunt virus associated with decline of Shamouti on Swingle citrumelo rootstock in South Africa. Plant Dis. 70: 892. 45. Martelli, G. P., Adams, M. J., Kreuze, J. F., and Dolja, V. V. 2007. Family Flexiviridae: A case study in virion and genome plasticity. Annu. Rev. Phytopathol. 45: 73-100. 46. Martin, S., Sambade, A., Rubio, L, Vives, M.C., Moya, P., Guerri, J., Elena, S.F., and Moreno, P. (2009). Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J. Gen. Virol. 90: 1527-1538. 47. Mas, P., and Pallas, V. 1996. Long-distance movement of cherry leaf roll virus in infected tobacco plants. J. Gen. Virol. 77: 531–540. 48. Mawassi, M., Gafny, R., and Bar-Joseph, M. 1993. Nucleotide sequence of the coat protein gene of citrus tristeza virus: comparison of biologically diverse isolates collected in Israel. Virus Genes 7: 265-75. 49. Miyakawa, T., and Matsui, C. 1976. A bud-union abnormality of Satsuma mandarin on Poncirus trifoliate rootstock in Janpan. In: Calavan, E. C., S. M. Garnsey and L. W. Timmer (eds), Proc. 7th. Conference Int. Org. Citrus. Virol. pp. 125-131. IOCV, Riverside. 50. Miyakawa, T. 1978. A bud-union disorder of Japanese citrus on Poncirus trifoliate rootstock caused by tatter leaf vurus. Rev. Plant Prot. Res. 11: 1-10. 51. Miyakawa, T. 1980. Occurrence and Varietal Distribution of Tatter Leaf-Citrange Stunt Virus and Its Effects on Japanese Citrus. In: Calavan, E. C., S. M. Garnsey and L. W. Timmer (eds), Proc. 8th. Conference Int. Org. Citrus. Virol. pp. 220-224. IOCV, Riverside. 52. Miyakawa, T., and Ito, T. 2000. Tatter leaf-citrange stunt. In: Compendium of Citrus Diseases. American Phytopathological Society Press, St. Paul, MN. 53. Namba, S. 1995. Capillovirus genus. Archives of Virology, Supplement 10: 465-467. 54. Nishio, T., Kawai, A., Takahashi, T., Namba, S., and Yamashita S. 1989. Purification and properties of citrus tatter leaf virus. Ann. Phytopath. Soc. Japan 55: 254-258. 55. Ohira, K., Ito, T., Kawai, A., Namba, S., Kusumi, T., and Tsuchizaki, T. 1994. Nucleotide sequence of the 3’ –terminal region of citrus tatter leaf virus RNA. Virus Genes 8: 169-172. 56. Ohira, K., Namba, S., Rozanov, M., Kusumi, T., and Tsuchizaki, T. 1995. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. J. Gen. Virol. 76: 2305-2309. 57. Riechmann, J. L., Lain, S., and Garcia, J. A. 1990. Infectious in vitro transcripts from a Plum Pox Virus cDNA clone. Virology 177: 710-716. 58. Roistacher, C. N., Nauer, E. M., and Wagner, R.C. 1980. Transmissibility of cachexia, Dweet mottle, psorosis, tatter leaf and infectious variegation on knife blades and its prevention. In: Calavan, E. C., S. M. Garnsey and L. W. Timmer (eds), Proc. 8th. Conference Int. Org. Citrus. Virol. pp. 225-229. IOCV, Riverside. 59. Roistacher, C. N., Gumf, D. J., Nauer, E. M., and Gonzales, R. 1983. Cachexia disease: virus or viroid. Citrograph 68: 111-113. 60. Roistacher, C.N. 1988. Citrus tatterleaf virus: Further evidence for a single virus complex. In: Timmer, L. W., S. M. Garnsey and L. Navarro (eds), Proc. 10th. Conference Int. Org. Citrus. Virol. pp. 353-359. IOCV, Riverside. 61. Semancik, J. S., and Weathers, L. G. 1965. Partial purification of mechanically transmissible virus associated with tatter leaf of citrus. PhytoPathol. 55: 1354-1358. 62. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z., and Burgyan, J. 2003. Low temperature inhibits RNA silencing-mediated defense by the control of siRNA generation. EMBO J. 22:633-640. 63. Su, H. J., and Cheon, J. U. 1984. Occurrence and distribution of tatter leaf-citrange stunt complex a Taiwanese citrus. Bull. Phytopathol. Entomol. NTU, Vol. 11: 42-48. 64. Tianmiao, Z. 1996. Effective methods for the elimination of citrus tatter leaf virus by thermotherapy and shoot-tip grafting. In: Timmer, L. W., S. M. Garnsey and L. Navarro (eds), Proc. 13th. Conference Int. Org. Citrus. Virol. pp. 310. IOCV, Riverside. 65. Tatineni, S., Afunian, M. R., Gowda, S., Hilf, M. E., Bar-Joseph, M., and Dawson, W. O., 2009a. Characterization of the 5′- and 3′-terminal subgenomic RNAs produced by a capillovirus: evidence for a CP subgenomic RNA. Virology 385: 521–528. 66. Tatineni, S., Afunian, M. R., Hilf, M. E., Gowda, S., Dawson, W. O., and Garnsey, S.M., 2009b. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology 99, 423–431. 67. Wallace, J. M., and Calavan, E. C. 1968. Tatter leaf. Agriculture Handbook 333. 68. Wallace, J. M., and Drake, R. J. 1962. Tatter-leaf, a previously undescribed virus effect on citrus. Plant Dis. Rept. 46: 211-212. 69. Wallace, J. M., and Drake, R. J. 1968. Citrange stunt and ringspot, two previously underscribed virus diseases of citrus. In: Calavan, E. C., S. M. Garnsey and L. W. Timmer (eds), Proc. 4th. Conference Int. Org. Citrus. Virol. pp. 117-180. IOCV, Riverside. 70. Walker, N. J. 2002. A technique whose time has come. Science 296: 557-558. 71. Weber, H., Haeckel, P., and Pfitzner, A. J. P. 1992. A cDNA clone of tomato mosaic virus is infectious in plants. J. Virol. 45: 3909-3912. 72. Wu, T., Deng, S., and Wu, S. 1996a. Non-Association of Citrus Tatter Leaf Virus with Yellow Ring Disease. In: da Graca, J. V., P. Moreno and R. K. Yokomi (eds), Proc. 13th. Conference Int. Org. Citrus. Virol. pp. 411. IOCV, Riverside. 73. Wu, T., Du, Y., Li, L., Deng, S., Wu, S., and Luo, Z. 1996b. Detection and elimination of citrus tatter leaf virus. In: da Graca, J. V., P. Moreno and R. K. Yokomi (eds), Proc. 13th. Conference Int. Org. Citrus. Virol. pp. 411. IOCV, Riverside. 74. Yarwood, C. E. 1963. Mechanical transmission of a latent lemon virus. (Abstr.) PhytoPathology 53: 1145. 75. Yoshikawa, N., Imaizumi, M., Takahashi, T., and Inouye, N. 1993. Striking similarities between the nucleotide sequence and genome organization of citrus tatter leaf and apple stem grooving caplloviruses. J. Gen. Virol. 74: 2743-2747. 76. Zhang, T. M., Liang, X.Y., and Roistacher, C. N. 1988. Occurrence and detection of citrus tatter leaf virus (CTLV) in Huangyan, Zhejiang Province, China. Plant Dis. 72: 543-545. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64863 | - |
| dc.description.abstract | 柑橘破葉病毒 (Citrus tatter leaf virus,CTLV),分類上屬於 Betaflexiviridae 科,Capillovirus 屬,基因體為 (+)ssRNA,被視為柑橘重要病毒病害之一,唯相關研究至今仍相當有限。本論文針對台灣椪柑 CTLV 分離株 (CTLV-Pk) 進行全長 cDNA 感染性選殖株 (infectious clones) 之構築,定序結果顯示其基因體全長為 6496 核苷酸,比大多數已知的CTLV 序列長 (6495核苷酸),其基因體組成與其他 Capillovirus 屬病毒相似,具有兩個轉譯框 (open reading frames,ORFs),ORF1 (37-6354 nt) 可產生一聚合蛋白 (polyprotein) p242,包含了複製相關區域 (replication associated region) 以及外鞘蛋白 (coat protein,CP),ORF1 尚有兩處變異較大區域存在,分別為變異區一 (variable region I) 位於胺基酸 532 到 570 位置以及變異區二 (variable region II) 位於胺基酸 1583 到 1868位置;ORF2 (4788-5750 nt) 與 ORF1為不同轉譯框,推測可產生移動蛋白 (movement protein,MP)。CTLV-Pk 與其他 CTLV 分離株及同屬於 Capillovirus 的 Apple stem grooving virus (ASGV) 相比,在基因體全長序列相似度達 79.4-94%,胺基酸序列相似度方面 ORF1 約 85.3-95.8%、CP 約92-95.8%、MP約93.4-99.1%。進而針對基因體全長序列及 ORF1 胺基酸序列做親緣分析,結果顯示,Capillovirus 屬病毒親緣關係為同一地區相似度較高。CTLV-Pk 感染性選殖株 (pCTLV-Pk) 可利用胞外轉錄 (in vitro transcription) 方式合成病毒基因體全長 RNA,於 22°C 下進行白藜感染力試驗,篩選出其中的一選殖株 (pCTLV-Pk-8) 轉錄之 RNA 可成功感染白藜,感染成功率約為 73.3%,且引發的病徵與原自然分離株相似,但病徵出現的時間稍微延遲,且可繼續感染白藜。同時觀察到 pCTLV-Pk-8轉錄 RNA 感染白藜所引起的病徵分佈並不均勻,且頂端葉病毒含量較多。本研究亦嘗試將 CTLV-Pk 外鞘蛋白轉譯起始碼 (5642 nt) 進行突變,會使 pCTLV-Pk-8 轉錄 RNA不能對白藜造成系統性病徵。另外本論文也改良了 CTLV 傳統 RT-PCR 偵測以及開發Real-time RT-PCR定量檢測技術。新設計的CTLV-501引子對可專一性的檢測 CTLV,其 RT-PCR 偵測敏感度可達到 1 pg RNA。另外,利用設計的TaqMan primers / probes 套組 (命名為CTLV-RT-TP) 進行 Real-time RT-PCR 定量分析,其敏感度可達到 10 fg RNA,可提供往後學術研究與檢疫應用之所需。 | zh_TW |
| dc.description.abstract | Citrus tatter leaf virus (CTLV) belongs to Capillovirus, Betaflexiviridae with the genome of (+) ssRNA packaged by a filamentous virion. CTLV has been considered to be one of iportant citrus virus diseases, but the scientific data associated with CTLV are still rare so far. This thesis was dedicated to construct the infectious clones of full-length cDNA of CTLV to obtain more molecular and pathological information about CTLV. A CTLV isolate named CTLV-Pk collected from the diseased Ponkan mandarin was used for the cloning. The sequencing data reveals that the genome of CTLV-Pk consists of 6496 nucleotides (nt). The size is larger than most other genome sequences of CTLV isolates (6495 nt). The genome organization is similar to other capilloviruses, with two overlapping open reading frames (ORFs). ORF1 encodes a polyprotein p242 containing replication-associated domains and coat protein (CP). There are two variable regions in ORF1: variable region I (amino acids 532 to 570) and variable region II (amino acids 1,583 to 1,868); ORF2 encodes a putative movement protein (MP). The nucleotide sequences of full-length genome of CTLV-Pk are similar (79.4-94%) to those of the other CTLV and Apple stem grooving virus (ASGV) isolates. The similarity of amino acid sequences is 85.3-95.8% for ORF1, 92-95.8% for CP and 93.4-99.1% for MP among those isolates. The phylogenetic analyses showed that the geographic separation might lead to the molecular differences among various capilloviruses. The complete genomic RNA of CTLV can be synthesized from infectious clones through in vitro transcription. In the inoculation tests, the selected infectious clone (pCTLV-Pk-8) could successfully infect Chenopodium quinoa at 22°C and incite the symptoms similar to the original CTLV-Pk isolate. The symptoms induced by pCTLV-Pk-8 were slightly later than those by CTLV-Pk. Approximately 73.7% of tested plants were positive for CTLV-infection in the inoculation tests, and they were able to maintain stability through serial passages on C. quinoa. Meanwhile, the results also indicated that the symptoms caused by in vitro transcripts from pCTLV-Pk-8 were not evenly distributed on C. quinoa. The trial using point mutation at translational start codon of CTLV-Pk coat protein (5642 nt) demonstrated that the mutant did not cause systemic symptoms on C. quinoa. For more sensitive detection of CTLV, this study also attempted to improve the RT-PCR and develop Real-time RT-PCR assays. The RT-PCR detection of CTLV with the newly devised primer pair CTLV-501 could obtain more specific and sensitive results even using only 1 pg of RNA template. The Real-time RT-PCR with the devised “CTLV-RT-TP TaqMan primers / probes” could better results even using only 10 fg of RNA template. The results presented in this thesis were expected to provide important references for the academic research and quarantine application in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:03:57Z (GMT). No. of bitstreams: 1 ntu-101-R99633004-1.pdf: 14634928 bytes, checksum: 56883caba22b4f47d11acb5817265b12 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 表目錄 ix 圖目錄 x 壹、 前言 1 貳、 前人研究 4 一、 柑橘破葉病毒之發生及危害地區 4 二、 柑橘破葉病毒之病徵及寄主範圍 4 三、 柑橘破葉病毒之傳播途徑 6 四、 柑橘破葉病毒之電子顯微鏡觀察 7 五、 柑橘破葉病毒之偵測 7 六、 台灣田間柑橘破葉病毒帶毒率調查 8 七、 柑橘破葉病毒之基因體特性及構築感染性選殖株 9 參、 材料與方法 11 一、 試驗植物之準備 11 二、 柑橘破葉病毒來源與保存 11 三、 柑橘破葉病毒感染性選殖株之構築 11 (一)、 總量 RNA 萃取 11 (二)、 增幅 CTLV-Pk 基因體全長之專一性引子對設計 12 1. CTLV-Pk 5‘ 端解序 12 2. PCR 及其產物電泳膠體分析 12 3. PCR 產物之選殖與定序 13 4. CTLV 序列之限制酶圖譜分析及引子對設計 13 (三)、 CTLV-Pk 全長序列 two-step RT-PCR 增幅反應 14 (四)、 PCR 產物純化 14 (五)、 CTLV-Pk 感染性選殖株之構築 15 1. 限制酶酵解 15 2. 酒精沉降核酸 15 3. 選殖 16 四、 中量質體純化 (Midiprep plasmid purification) 16 五、 胞外轉錄 (in vitro transcription) 17 六、 點突變 (Site directional mutation) 17 七、 白藜接種試驗 18 (一)、 pCTLV-Pk 感染性選殖株之感染力試驗 18 (二)、 病徵分佈觀察 18 (三)、 CTLV-Pk 外鞘蛋白轉譯起始點突變株接種試驗 18 八、 CTLV 之偵測方法設計 18 (一)、 改良之傳統 RT-PCR 偵測 19 1. 專一性引子對之設計 19 2. One-step RT-PCR 增幅 19 (二)、 Real-time RT-PCR 定量偵測技術之研發 19 1. TaqMan primer / probe 設計 19 2. RNA 反轉錄 20 3. 標準品與標準曲線之建立 20 4. Real-time PCR / TaqMan primer / probe 操作流程 20 (三)、 RT-PCR 與 Real time RT-PCR 之靈敏度比較 21 九、 CTLV 之基因體分析 21 肆、 結果 22 一、 CTLV-Pk 基因體 5’ 端序列決定 22 二、 CTLV-Pk 基因體全長感染性選殖株之構築 22 三、 pCTLV-Pk 之基因體分析及比較 23 四、 胞外轉錄 (in vitro transcription) 24 五、 CTLV-Pk 感染性選殖株之感染力試驗 25 (一)、 白藜接種試驗及病徵觀察 25 (二)、 CTLV RT-PCR偵測 26 1. CTLV 專一性引子對設計及白藜檢測試驗 26 六、 pCTLV-Pk-8 轉錄 RNA 接種白藜病毒量變化及病徵分佈觀察 26 七、 CTLV-Pk 外鞘蛋白轉譯起始點突變接種試驗 27 八、 TaqMan primers / probes Real-time RT-PCR 定量偵測技術之研發 27 (一)、 通用性 TaqMan primers / probes 設計 27 (二)、 標準曲線之建立 28 九、 RT-PCR 及 Real-time RT-PCR 柑橘檢測專一性及敏感度試驗 28 (一)、 柑橘檢測專一性試驗 28 1. RT-PCR 28 2. Real-time RT-PCR 28 (二)、 偵測敏感度試驗 29 伍、 討論 30 陸、 參考資料 37 柒、 表 44 捌、 圖 52 表目錄 表一、柑橘葉病毒感染性選殖株 pCTLV-Pk 全長定序所用引子對之核酸序列 44 表二、本研究所用之引子對及探針 45 表三、本研究用來進行 Capillovirus 屬序列分析比對之病毒來源 46 表四、CTLV-Pk 感染性選殖株 (pCTLV-Pk-8、pCTLV-Pk-18、pCTLV-Pk-47) 之全長核酸序列相同度 (%) 以及 ORF1 聚蛋白、外鞘蛋白、移動蛋白 胺基酸序列相同度 (%) 比較 47 表五、CTLV-Pk 感染性選殖株 (pCTLV-Pk-8、pCTLV-Pk-18、pCTLV-Pk-47) 胺基酸相異位置比較 48 表六、比較 CTLV-Pk 與 Capillovirus 屬病毒全長核酸序列及 ORF1 聚蛋白、外鞘蛋白、移動蛋白、變異區 I 及 II 胺基酸序列相同度 (%) 49 表七、針對不同品種柑橘植株以 RT-PCR 與 Real-rime RT-PCR 偵測 CTLV 50 表八、以 pCTLV-Pk-8 轉錄 RNA 接種白藜於不同天數下觀察頂端展開葉病徵表現及RT-PCR檢測結果 51 圖目錄 圖一、CTLV-Pk 基因體組成及感染性選殖株 pCTLV-Pk 構築流程圖與嵌入序列片段結構圖 52 圖二、CTLV-Pk 與 Capillovirus 屬病毒 5’ 端序列比對結果 54 圖三、引子對 CTLV-F-ApaI-Sp6 及 CTLV-R-NotI 增幅 CTLV-Pk 全長片段 55 圖四、以 ApaI 及 NotI-HF 限制酶對構築之選殖株 pCTLV-Pk 進行酵解篩選 56 圖五、CTLV-Pk 與 Capillovirus 屬病毒變異區 I 胺基酸序列比對結果 57 圖六、CTLV-Pk 與 Capillovirus 屬病毒變異區 II 胺基酸序列比對結果 59 圖七、利用 neighbour-joining 方法建立 CTLV-Pk 與 Capillovirus 屬病毒基因全長序列之親緣樹關係圖 61 圖八、利用 neighbour-joining 方法建立 CTLV-Pk 與 Capillovirus 屬病毒 ORF1 胺基酸序列之親緣樹關係圖 63 圖九、電泳分析 CTLV-Pk 感染性選殖株 pCTLV-Pk-8 胞外轉錄 RNA 65 圖十、經 pCTLV-Pk-8轉錄 RNA接種白藜之不同天數病徵表現 66 圖十一、pCTLV-Pk-8轉錄 RNA 與 CTLV-Pk 接種白藜之病徵產生及時間點比較 68 圖十二、透過 one-step RT-PCR 以引子對 CTLV-501 檢測 pCTLV-Pk-8 轉錄 RNA 接種之白藜葉片 70 圖十三、以受 pCTLV-Pk-8 轉錄 RNA感染之白藜葉片汁液接種白藜 (Cq-one-2) 34 天後病徵發展俯視圖 71 圖十四、CTLV-Pk 外鞘蛋白轉譯起始碼突變株 pCTLV-Pk8-U5642C 之取得及白藜接種葉片病徵觀察與檢測 72 圖十五、以 one-step RT-PCR 及 Real-time RT-PCR 對不同柑橘品種進行 CTLV 檢測試驗 74 圖十六、以引子對 CTLV-501與 CTLV-636 及 TaqMan primers / probes 套組CTLV-RT-TP 進行偵測靈敏度測試 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蘋果莖凹陷病毒 | zh_TW |
| dc.subject | 柑橘破葉病毒 | zh_TW |
| dc.subject | 感性選殖株 | zh_TW |
| dc.subject | Citrus tatter leaf virus | en |
| dc.subject | Apple stem grooving virus | en |
| dc.subject | infectious clone | en |
| dc.title | 柑橘破葉病毒感染性選殖株之構築及偵測方法之改良 | zh_TW |
| dc.title | Construction of Infectious Clones and Detection
Improvement of Citrus tatter leaf virus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張雅君(Ya-Chun Chang),葉信宏(Hsin-Hung Yeh) | |
| dc.subject.keyword | 柑橘破葉病毒,蘋果莖凹陷病毒,感性選殖株, | zh_TW |
| dc.subject.keyword | Citrus tatter leaf virus,Apple stem grooving virus,infectious clone, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 14.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
