請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64853
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳光鐘 | |
dc.contributor.author | Yu-Sheng Wang | en |
dc.contributor.author | 王裕升 | zh_TW |
dc.date.accessioned | 2021-06-16T23:02:13Z | - |
dc.date.available | 2013-08-15 | |
dc.date.copyright | 2012-08-15 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-07 | |
dc.identifier.citation | [1] A. A. Griffith, 'The Phenomena of Rupture and Flow in Solids,' Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. Series A, Vol. 221, pp. 163-197, 1921.
[2] G. R. Irwin, 'Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,' Journal of Applied Mechanics, vol. Vol. 24, pp. 361-364, 1957. [3] Y. Murakami, Stress intensity factors handbook, 1st ed. Oxford Oxfordshire ; New York: Pergamon, 1987. [4] G. C. Sih, The Handbook of Stress Intensity Factors. Lehigh University, 1970. [5] H. Tada, P. C. Paris, and G. R. Irwin, The stress analysis of cracks handbook, 3rd ed. New York: ASME Press, 2000. [6] G. Leibfried, 'Verteilung Von Versetzungen Im Statischen Gleichgewicht,' Zeitschrift Fur Physik, vol. 130, pp. 214-226, 1951. [7] G.C. Sih, P.C. Paris, and F. Erdogan, 'Crack-tip stress-intensity factors for plane extension and plate bending problems,' Journal of Applied Mechanics-Transactions of the Asme, vol. 29, pp. 306-12, 1962. [8] F. Erdogan, 'On the stress distribution in plates with collinear cuts under arbitrary loads,' ed. Proceedings. Fourth U.S. : National Congress of Applied Mechanics., 1962, pp. 547-553. [9] G. Vialaton, G. Lhermet, G. Vessiere, M. Boivin, and J. Bahuaud, 'Field of Stresses in an Infinite Plate Containing 2 Collinear Cuts Loaded at Arbitrary Location,' Engineering Fracture Mechanics, vol. 8, pp. 525-538, 1976. [10] Y. Z. Chen, 'Multiple Crack Problems of Antiplane Elasticity in an Infinite Body,' Engineering Fracture Mechanics, vol. 20, pp. 767-775, 1984. [11] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity :fundamental equations, plane theory of elasticity, torsion and bending. The Netherlands: Noordhoff International, 1963. [12] K. S. Parihar and S. Lalitha, 'Cracks Located on a Single Line in an Orthotropic Elastic Medium in Which Body Forces Are Acting,' International Journal of Engineering Science, vol. 25, pp. 735-754, 1987. [13] H. F. Bueckner, 'A Novel Principle for Computation of Stress Intensity Factors,' Zeitschrift Fur Angewandte Mathematik Und Mechanik, vol. 50, pp. 529-546, 1970. [14] H. F. Bueckner, Field singularities and related integral representations, in Mechanics of Fracture(Edited by G. C. Sih). The Netherlands: Noordhoff-Leyden, 1973. [15] J. Rice, 'Some remarks on elastic crack-tip stress field,' International Journal of Solids and Structures, vol. 8, pp. 751-758, 1972. [16] H. J. Petroski and J. D. Achenbach, 'Computation of Weight Function from a Stress Intensity Factor,' Engineering Fracture Mechanics, vol. 10, pp. 257-266, 1978. [17] S. Das, 'Weight function for a crack in a two-dimensional orthotropic medium under impact shear loading,' International Journal of Fracture, vol. 142, pp. 331-338, Dec 2006. [18] F. Erdogan and G. D. Gupta, 'Numerical Solution of Singular Integral-Equations,' Quarterly of Applied Mathematics, vol. 29, pp. 525-&, 1972. [19] K. C. Wu, 'On the Crack-Tip Fields of a Dynamically Propagating Crack in an Anisotropic Elastic Solid,' International Journal of Fracture, vol. 41, pp. 253-266, Dec 1989. [20] T. C.-T. Ting, Anisotropic Elasticity: Theory and Applications vol. XVII. New York/Oxford: Oxford University Press, 1996. [21] 鄧明浩, '異相彈狹長條內裂縫之分析,' 國立台灣大學應用力學研究所碩 士論文 1996 [22] 林敬修, '異相彈材料內含孔洞、彈性異物質或剛性異物質與裂縫分析,' 國立台灣大學應用力學研究所碩士論文 1997 [23] 陳靖淇, '第三型裂縫受動態荷重之分析,' 國立台灣大學應用力學研究所 碩士論文 2009 [24] 侯雨利, '非共線多裂縫受反平面荷重之動態分析,' 國立台灣大學應用力 學研究所是論文 2009 [25] 楊志華, '利用邊界元素法分析異向性岩石邊坡之裂縫行為研究,' 國立成 功大學資源工程研究所碩士論文 2009 [26] 余建政,泰平源,高銘政, ' Matlab程式設計與應用,'新文京開發出版股份有 限公司 2006 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64853 | - |
dc.description.abstract | 本研究主要在探討均質的線彈性體內多裂縫系統受到集中力作用之應力強度因子。本文係利用差排模擬裂縫,建構出裂縫面上應力分佈之積分方程式,並使用高斯-謝比雪夫積分法得到方程式之數值解形式;進而由積分方程式之數值解建立聯立方程式,解得差排密度源函數之節點值,由此計算出裂縫尖端之應力強度因子。
本文首先討論了無限空間中受集中力作用之共線等長雙裂縫與半無限空間中受集中力作用之單一邊裂縫兩個算例與文獻做比較,得知本文解法具有高度準確性;接著計算無限空間中受集中力作用之非共線多裂縫系統以及半無限空間中受集中力作用之共線多裂縫系統。本文建立了一套求解集中力作用於多裂縫系統之應力強度因子的分析方法。 | zh_TW |
dc.description.abstract | The stress intensity factor of multiple cracks system in a homogeneous linear elastic body under concentrated load is discussed in this study. Distribution of dislocations are used to simulate the cracks and construct the integral equation which relating tractions on crack planes. The integral equation can be calculated numerically using Gaussian- Chebyshev integration quadrature and derive simultaneous equations. Solving the simultaneous equation can obtain the nodes of dislocation intensity function and then calculate the stress intensity factor at the crack tips.
This thesis studied two collinear cracks of identical length under concentrated loading in infinite body and one edge crack under concentrated loading in semi- infinite body at first, to compare the numerical result with literature showing that the present method is highly accurate. Then calculate non-collinear multiple cracks system under concentrated loading in infinite body and collinear multi-edge cracks under concentrated loading in semi-infinite body. This thesis construct a method solving stress intensity factor for multiple cracks under concentrated loading. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:02:13Z (GMT). No. of bitstreams: 1 ntu-101-R99543045-1.pdf: 14997603 bytes, checksum: a176424d6128e54a2c8d91e3fdbdc772 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 導論 1 1.1. 破壞力學簡介 1 1.2. 研究動機與文獻回顧 2 1.3. 本文大綱 3 第二章 解析解 4 2.1. 二維彈性力學基本方程式 4 2.2. 史磋法(STROH’S FORMALISM) 4 2.3. 差排及集中力 7 2.4. 受集中力作用之單一裂縫 8 2.5. 受集中力作用之共線雙裂縫 12 第三章 數值方法 17 3.1. 以差排模擬裂縫之積分方程式 17 3.2. 應力強度因子之計算 18 3.3. 受集中力作用之無限域內不共線多裂縫系統解法 20 3.4. 受集中力作用之半無限域內共線多裂縫系統解法 23 第四章 數值結果與討論 26 4.1. 理論驗證 26 4.1.1. 集中力作用於共線等長雙裂縫 27 4.1.2. 集中力作用於半無限域邊裂縫 30 4.2. 受集中力作用之無限域內不共線多裂縫系統算例 34 4.2.1. 集中力作用於平行等長雙裂縫上裂縫面 34 4.2.2. 集中力作用於錯位等長雙裂縫上裂縫面 44 4.3. 受集中力作用之半無限域內共線多裂縫系統算例 56 4.3.1. 集中力作用於共線等長邊裂縫 56 4.3.2. 集中力作用於共線等長內裂縫 62 第五章 結論與未來展望 68 參考文獻 70 | |
dc.language.iso | zh-TW | |
dc.title | 裂縫受集中力作用之分析 | zh_TW |
dc.title | Analysis of Cracks under Concentrated Loading | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭茂坤,張正憲 | |
dc.subject.keyword | 集中力,均質,線彈性,應力強度因子,差排,高斯-謝比雪夫積分法,無限空間,半無限空間,多裂縫系統, | zh_TW |
dc.subject.keyword | concentrated load homogeneous,linear elastic,stress intensity factor,dislocation,Gauss-Chebyshev Integration Formula,infinite plane,semi-infinite plane,multiple cracks system, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 14.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。