Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64846
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorKevin Kuang Hsiehen
dc.contributor.author謝鎮光zh_TW
dc.date.accessioned2021-06-16T23:01:32Z-
dc.date.available2014-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] 'Stroke Pictures Slideshow: A Visual Guide to Understanding Stroke on MedicineNet.com.' Web. 20 Oct. 2010. <http://www.medicinenet.com/stroke_pic tures_slideshow/article.htm>.
[2] Estrera, A. L., Garami Z., et al. (2005). 'Cerebral monitoring with transcranial Doppler ultrasonography improves neurologic outcome during repairs of acute type A aortic dissection.' Journal of Thoracic and Cardiovascular Surgery 129(2): 277-285.
[3] Ederle, J. and Brown M. M. (2006). 'The evidence for medicine versus surgery for carotid stenosis.' European Journal of Radiology 60(1): 3-7.
[4] Rothwell P. M., Eliasziw M., Gutnikov S. A., Warlow C. P., Barnett H. J.. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet. 2004, 363 (9413): 915–24. doi:10.1016/S0140-6736(04)15785-1. PMID 15043958.
[5] Fairhead J. F., Mehta Z., Rothwell P. M.. Population-based study of delays in carotid imaging and surgery and the risk of recurrent stroke. Neurology. 2005, 65 (3): 371–5. doi:10.1212/01.wnl.0000170368.82460.b4. PMID 16087900.
[6] Ederle, J., Featherstone R. L., et al. (2007). 'Percutaneous transluminal angioplasty and stenting for carotid artery stenosis.' Cochrane Database of Systematic Reviews(4).
[7] Cerebrovascular accident, MD Guidelines, Reed Group. Web. 25 Oct. 2010. <http://www.mdguidelines.com/cerebrovascular-accident>.
[8] A.D.A.M. Editorial Team: Zieve D., MD, MHA, and Eltz D. R.. Previously reviewed by Dugdale D. C., III, MD, Professor of Medicine, Division of General Medicine, Department of Medicine, University of Washington School of Medicine (7/29/2009) (6 June 2010). 'Circle of Willis'. Retrieved 16 July 2010.
[9] Uston, Cagatay (February 20, 2004). 'Dr. Thomas Willis' Famous Eponym: The Circle of Willis'. Turkish Journal of Medical Sciences 34: 271–274. Retrieved 16 July 2010.
[10] Dale P., Augustine G. J., Fitzpatrick D., Hall W. C., LaMantia A. S., McNamara J. O., White L. E. (2008). Neuroscience, 4: 834–5. ISBN 978-0-87893-697-7.
[11] Moore K. L., Dalley A. R. Clinically Oriented Anatomy, 5th Ed., Lippincott Williams & Wilkins, Toronto. Copyright 2007
[12] Van Dongen J., Klijn A. J., Jaap C. J., Kappelle L., Van Rijk P. P., Hendrikse J. (2006). 'Spect measurements of regional cerebral perfusion and carbon dioxide reactivity: Correlation with cerebral collaterals in internal carotid artery occlusive disease'. J Neurol 253 (10): 1285–1291. doi:10.1007/s00415-006-0192-1. PMID 17063318.
[13] Educational hemodynamic software, Transcranial Doppler. Web. 20 Nov. 2010. <http://www.transcranial.com/>.
[14] Bergman R. A., Afifi A. K., Miyauchi R., Circle of Willis. Illustrated Encyclopedia of Human Anatomic Variation. Web. 10 Dec. 2011. <http://www.anatomyatlases.org/AnatomicVariants/Cardiovascular/Text/Arteries/CircleofWillis.shtml>.
[15] Hennerici M., Rautenberg W., et al. (1987). 'Transcranial Doppler Ultrasound for the Assessment of Intracranial Arterial Flow Velocity .I. Examination Technique and Normal Values.' Surgical Neurology 27(5): 439-448.
[16] Aaslid R., Markwalder T. M., et al. (1982). “Noninvasive transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries.” Journal of Neurosurgery (57)769-774
[17] Harders, A. Gilsbach, J. (1985). “Transcranial Dopplersonography and its applications in extracranial-intracranial bypass surgery.” Neurological Research 7:129-141.
[18] Grolimund P., Sciler R. W., (1988). “Age 1 of the flow velocity in the basal cerebral arteries.” A transcranial Doppler ultrasound study. Ultrasound Med. Biol. 14:191-198;
[19] Totaro, R., Marini C., et al. (1992). 'Reproducibility of Transcranial Doppler Sonography - a Validation-Study.' Ultrasound in Medicine and Biology 18(2): 173-177.
[20] Bacalli, S., Cencetti S., et al. (1993). 'Assessment of Hypertensive Cerebrovascular-Disease.' Current Therapeutic Research-Clinical and Experimental 53(2): 230-234.
[21] Marinoni, M., Ginanneschi A., et al. (1997). 'Technical limits in transcranial Doppler recording: Inadequate acoustic windows.' Ultrasound in Medicine and Biology 23(8): 1275-1277.
[22] Baumgartner R. W., Gonner F, Arnold M, Muri R. M. (1997). “Transtemporal power- and frequency-based color-coded duplex sonography of cerebral veins and sinuses. “ AJNR Am J Neuroradiol 1997; 18: 1771–1781.
[23] Stolz E., Kaps M, Kern A., Babacan S. S., Dorndorf W. (1999). “Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. “Reference data from 130 volunteers. Stroke 1999; 30: 1070–1075.
[24] Stolz E., Kaps M., Dorndorf W. (1999). “Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis”. Stroke 1999(30): 70–75.
[25] Marinoni M., Ginanneschi A., Forleo P., Amaducci L. (1997). “Technical limits in transcranial Dopplerrecording: Inadequate acoustic windows.” Ultrasound Med Biol 1997(23): 1275–1277.
[26] Woo J., A short History of the development of Ultrasound in Obstetrics and Gynecology. Web. 1 Dec. 2010. <http://www.ob-ultrasound.net/history1.html>.
[27] Baumgartner R. W. (2006). 'Transcranial Insonation.' Handbook on Neurovascular Ultrasound. 2006 (21): 105–16.
[28] Baumgartner R. W. (ed) (2006). “Handbook on Neurovascular Ultrasound, Ultrasound Diagnostics of the Vertebrobasilar System.” Front Neurol Neurosci. Basel, Karger, 2006( 21): 57–69.
[29] Deane C., “Doppler ultrasound: principles and practice.” Web. 10 Oct. 2010. <http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/chapter_01.htm>.
[30] Ferrara K. W., Algazi V. R. (1991). “A new wideband spread target maximum likelihood estimator for blood velocity estimation − Part I: Theory.” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 1991( 38): 1–16.
[31] Jeng, G. S., Li P. C. (2005). 'Vector velocity estimation in swept-scan mode using a k-space approach.' Medical Imaging 2005: Ultrasonic Imaging and Signal Processing 5750: 468-477.
[32] Markus H. S. (2000). 'Transcranial Doppler ultrasound.' British Medical Bulletin 56(2): 378-388.
[33] Lupetin, A. R., Davis D. A., et al. (1995). 'Transcranial Doppler Sonography .1. Principles, Technique, and Normal Appearances.' Radiographics 15(1): 179-191.
[34] Ringelstein E. B. (1989). “A practical guide to transcranial Doppler sonography.” In: Weinberger J. ed. Non-invasive imaging of cerebrovascular disease. New York, NY: Liss, 1989: 75–121.
[35] Fujioka K. A., Douville C. M. (1992). “Anatomy and free-hand examination techniques.” In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven, 1992:9–31
[36] Hennerici M., Rautenberg W., Schwartz A. (1987). “Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. II. Evaluation of intracranial arterial disease.” Surg. Neurol 1987(27):523-532
[37] Njemanze P. C., inventor (2003 Apr. 15). “Intelligent transcranial Doppler probe.” United States patent US 6,547,737.
[38] “Introducing the ROBOTOC2MD Robotic Headband,” Multigon Industries. Web. 19 Dec. 2010. <http://www.multigon.com/>.
[39] Pierce M., inventor (2009 Jul. 16). “Wireless ultrasound system display.” United States patent US 2009/0182228.
[40] Yong, S. K. and Chong C. C. (2007). 'An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges.' Eurasip Journal on Wireless Communications and Networking. 2007(78907)
[41] Simon D.. “Atherosclerosis of internal carotid artery.” Health Central. Web. 12 Mar. 2012. <http://www.healthcentral.com/heart-disease/000237.html>.
[42] Blackshear, W. M., Phillips D. J., et al. (1980). 'Carotid-Artery Velocity Patterns in Normal and Stenotic Vessels.' Stroke 11(1): 67-71.
[43] Stoylen A.. “Basic ultrasound, echocardiography and Doppler for clinicians.” NTNU <http://folk.ntnu.no/stoylen/strainrate/Ultrasound/#gain_comp r_rej>.
[44] “Physics, Techniques and Procedures, Pulsatility index (PI),” General Electric Company. Web. 5 Jan. 2011. <http://www.medcyclopaedia.com/library/topics /volume_i/p/pulsatility_in dex_pi_/dpulsatility_index_pi_fig1.aspx>.
[45] Aaslid R., Huber P., Nornes H. (1984). “Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound.” J Neurosurg 1984;60:37–41.
[46] Rajajee V., Fletcher J. J., et al. (2012). “Low Pulsatility Index on Transcranial Doppler Predicts Symptomatic Large-Vessel Vasospasm After Aneurysmal Subarachnoid Hemorrhage.” Neurosurgery 2012 May. 70(5):1195–206.
[47] Li, H. Y., Zhang Y. F., et al. (2010). 'Noise and Speckle Reduction in Doppler Blood Flow Spectrograms Using an Adaptive Pulse-Coupled Neural Network.' Eurasip Journal on Advances in Signal Processing. 2010(918015)
[48] Chiu, P. K., Li P. C., (2009). “Measurements of Arterial Pulse Wave Velocity Using an Ultrasonic Linear Array.” National Taiwan University Master Thesis.
[49] “Confessions of a chemical feed pump manufacturer,” Blue-White Industries, Ltd.. Web. 13 Feb. 2011. <http://www.bluwhite.com/artchemfeedpump.htm>.
[50] Samavat H., Evans J. A. (2006). “An ideal blood mimicking fluid for Doppler ultrasound phantoms. “J Med Phys 2006(31):275-8.
[51] Angelsen B. A. (2000) “Ultrasound imaging. Waves, signals and signal processing.” Trondheim 2000. Emantec, Norway. Web. 9 Nov. 2010. <www.ultrasoundbook.com>.
[52] Tahmasebpour, H. R., Buckley A. R., et al. (2005). 'Sonographic examination of the carotid arteries.' Radiographics 25(6): 1561-1575.
[53] Aaslid R, inventor (1989 Apr. 4). “Apparatus including Doppler signal transducer for determining the position of an object.” United States patent US 4,817,621.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64846-
dc.description.abstract在台灣,中風佔十大死因的第三位,中風造成的癱瘓也會造成社會經濟負擔。中風主要有分兩種,腦血管栓塞與腦溢血。目前都卜勒超音波系統,可用來探測心臟與顱內血管的流速,在心臟手術和中風病人間的用途已有廣泛之應用。但以經顱超音波的應用來說,系統的排線會限制操作的範圍與角度,另外手動式的血管訊號偵測非常花費時間。本研究目標便是以無線傳輸的方式,自動偵測病人腦中血管的情況。本研究發展了自動血管訊號偵測的演算法,並在仿體與人體上測試結果。此演算法能自動化及縮短尋找正確血管深度的時間,和加強最後血流分佈圖影像的清晰度。這些演算法技術先在單一和線性正列超音波探頭上設計。在先導研究中,使用5 MHz中心頻率探頭和CompuFlow1000組成的超音波系統,並用正列線性探頭來接收流速訊號對海藻膠仿體和頸動脈進行測試,來探討自動血管訊號偵測演算法的性能。在結果上,運用流速自動偵測演算法尋找到仿體血管的開始深度為34.18mm,和用波形自動偵測演算法在人體頸動脈上得到最佳的血管深度範圍為28.64~32.34mm。在影像後處理上,利用適應性脈衝藕合神經網絡(AD-PCNN)的原理達到接近SNR增值(8.70 to 21.72 dB)和壓抑雜訊 (10 dB)。至於無線傳輸的可行性也在國家晶片中心(NSOC)下和不同實驗室所研發出的無線經顱超音波系統 (wireless TCD)上測試。在一個蠕動幫浦和仿體血管架構,此超音波系統能正確的無線傳輸流速訊號。其高速的60 GHz 無線模組(~1 Gb/s) 和統一計算架構(CUDA)能提供快速的遠端資料傳輸與運算,不只能提供給病人和醫生觀察,也可傳出到醫院伺服器端做紀錄也提倡系統簡易操作性給醫療人員。未來我們希望能把AVDA和wireless TCD整合來達到臨床的自動化血管偵測。zh_TW
dc.description.abstractCerebral vascular diseases (strokes) account for the third highest cause of death in Taiwan. There are mainly two types of stroke, ischemic (clogging of brain vessel) and hemorrhagic (burst of brain vessel) strokes. The permanent disability caused by stroke also creates a huge cost for the society. Currently, Doppler ultrasound systems are used to detect vessel flows in the heart or intracranial region during the open-heart operation and stroke patients monitoring. However, the operation of transcranial Doppler (TCD) ultrasound systems requires experienced medical personnel and the Doppler gate seeking is done manually. Furthermore, the wires connecting the systems often restrict the angle and range of operation for the examiners. In order to perform faster diagnosis for stroke symptoms, automatic vessel detecting algorithm (AVDA) finding the Doppler gate (depth interval) of the phantom vessel and common carotid arteries is developed. The algorithm stresses on the depth interval where best flow signal can be obtained. In the early stage, a 5 MHz linear ultrasound transducer and CompuFlow 1000 are used to construct an ultrasound system. Under the phantom setup, the velocity scale AVDA locates the correct Doppler gate at starting depth of 34.18mm. Likewise, the vessel range for the Doppler gate is accurately determined to be at 28.64~32.34mm for the common carotid data from using the waveform AVDA. In the post image processing, adaptive pulse coupled neural network denoising (AD-PCNN) technique is used to improve the image SNR from 8.70 to 21.72 dB, and able to effectively inhibit additional noise at 10 dB. A wireless TCD system is designed under collaboration between various labs funded by National System on Chip’s (NSOC) grant. The wireless data transfer is inspected by experimenting over a phantom vessel with peristaltic pump. The wireless TCD system is able to correctly input and output flow signal from the transducer to the end display on the computer. The implemented 60 GHz wireless module and computed unified device architecture (CUDA) can provide fast data transferring (~1 Gb/s) and calculation of the Doppler spectrogram. Not only the spectrogram can be executed real-time for the patient diagnosis, the data can be transferred wirelessly into the hospital server. For future work, we wish to integrate the AVDA and the NSOC wireless TCD system to achieve automatic vessel detection in clinical settings.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:01:32Z (GMT). No. of bitstreams: 1
ntu-101-R99945044-1.pdf: 4433610 bytes, checksum: b31c9407bbd6263426c91e3ae1201c2b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
Acknowledgement I
中文摘要 II
ABSTRACT III
CONTENTS V
LIST OF TABLES XIII
Chapter 1 INTRODUCTION 1
1.1 Cerebrovascular Diseases 1
1.1.1 Stroke 1
1.1.2 Treatment for strokes 2
1.2 Physiological Aspects 2
1.2.1 Transcranial Region 2
1.3 Doppler Ultrasound 9
1.3.1 Spectral Doppler 10
1.4 Conventional Transcranial Systems 13
1.4.1 Intelligent Transcranial Doppler Probe 14
1.4.2 Multigon ROBOTOC2MD 15
1.5 Research Motivation and Goals 16
1.6 Proposed System 17
1.7 Dissertation Organization 18
Chapter 2 THE PROPOSED WIRELESS TCD SYSTEM 19
2.1 NSOC Wireless TCD System Architecture 19
2.1.1 The Transmitting Board 19
2.1.2 Transducer and Headset Designs 20
2.1.3 Wireless Module Specification 21
2.1.4 The Receiving Board 22
2.1.5 Data Processing with CUDA 23
2.2 Signal Processing 24
2.2.1 Carotid Artery 24
2.2.2 Pulsed Wave Spectrum and Velocity Detection 25
2.2.3 Flow Velocity and Waveform Detection 26
2.3 Vessel Flow Detecting Algorithm 27
2.3.1 Doppler Indices and Depth of Major Vessels 28
2.3.2 Velocity Scale Detection Algorithm 30
2.3.3 Adaptive Pulse Coupled Neural Network Denoising Technique 32
2.3.4 Automatic Doppler Waveform Detection 38
Chapter 3 EXPERIMENTAL SETUP 41
3.1 NSOC Wireless TCD Phantom Flow Velocity Calculation 41
3.1.1 Vessel Phantom Production 41
3.1.2 Peristaltic Pumping System 42
3.1.3 Computed Unified Device Architecture (CUDA) 43
3.2 Verasonics Acquisition with Phantom 44
3.2.1 Flow Mimicking Pumps 44
Chapter 4 EXPERIMENTAL RESULTS 47
4.1 NSOC Wireless TCD 47
4.2 Robustness for Finding the Correct Doppler Gate 49
4.2.1 Phantom Vessel Flow Location 49
4.2.2 Validity of Common Carotid Flow Information 51
4.2.3 Wall Filter for Unwanted Signal Suppression 55
4.3 AVDA Results in Different Carotid Settings 58
4.3.1 Inadequate penetration of blood vessels in the A-line 58
4.4 AD-PCNN Denoising Results 61
4.4.1 Noise Suppression 62
Chapter 5 ANALYSIS AND DISCUSSION 63
5.1 Experimental Settings 63
5.1.1 Pump Settings 63
5.1.2 Data Extraction Requirement 64
5.2 System Limitation 65
5.2.1 Pulse Repetition Interval 65
Chapter 6 CONCLUSION AND FUTURE WORK 67
6.1 NSOC Implementation of AVDA 67
6.1.1 Software Improvement 67
6.1.2 Hardware Improvement 68
REFERENCE LISTS 71
dc.language.isoen
dc.subject無線脈衝式都普勒超音波zh_TW
dc.subject自動偵測zh_TW
dc.subject統一計算架構zh_TW
dc.subject適應性脈衝藕合神經網絡zh_TW
dc.subjectWireless Pulsed Wave Doppler Ultrasounden
dc.subjectComputed Unified Device Architectureen
dc.subjectAdaptive Pulse-Coupled Neural Networken
dc.subjectAutomatic Scanningen
dc.title使用血管自動偵測演算法在脈衝式都普勒超音波zh_TW
dc.titleAutomatic Vessel Detecting Algorithm in Pulsed Wave Doppler Ultrasounden
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡(Po-Ling Kuo),林隆君(Lung-Chun Lin)
dc.subject.keyword自動偵測,無線脈衝式都普勒超音波,統一計算架構,適應性脈衝藕合神經網絡,zh_TW
dc.subject.keywordAutomatic Scanning,Wireless Pulsed Wave Doppler Ultrasound,Computed Unified Device Architecture,Adaptive Pulse-Coupled Neural Network,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
4.33 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved