請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64841完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 萬本儒(Ben-Zu Wan) | |
| dc.contributor.author | Han-Yeou Huang | en |
| dc.contributor.author | 黃瀚友 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:01:17Z | - |
| dc.date.available | 2015-01-01 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | [1] H. B. Bakoglu and J. D. Meindl, Optimal interconnection circuits for VLSI. Ieee Transactions on Electron Devices, 1985. 32(5): p. 903-909.
[2] P. S. Ho, J. Leu, and W. W. Lee, Overview on Low Dielectric Constant Materials for IC Applications, in Low dielectric constant materials for IC APPLICATIONS, P.S. Ho, J.J. Leu, and W.W. Lee, Editors. 2003, Springer Berlin Heidelberg. p. 1-21. [3] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery. Full copper wiring in a sub-0.25 μm CMOS ULSI technology. in Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International. 1997. [4] W. W. Lee and P. S. Ho, Low-dielectric-constant materials for ULSI interlayer-dielectric applications. Mrs Bulletin, 1997. 22(10): p. 19-24. [5] The International Technology Roadmap for Semiconductors. For more information about ITRS see http://www.itrs.net/2011. [6] Hong Xiao, Introduction to semiconductor manufacturing technology. 3rd ed2001: Pearson. 481. [7] C.-T. Tsai, H.-Y. Lu, C.-Y. Ting, W.-F. Wu, and B.-Z. Wan, Increasing mechanical strength of mesoporous silica thin films by addition of tetrapropylammonium hydroxide and refluxing processes. Thin Solid Films, 2009. 517(6): p. 2039-2043. [8] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, Low dielectric constant materials for microelectronics. Journal of Applied Physics, 2003. 93(11): p. 8793-8841. [9] L. Shen and K. Y. Zeng, Comparison of mechanical properties and non-porous low-k dielectric of porous films. Microelectronic Engineering, 2004. 71(2): p. 221-228. [10] M. K. Bhan, J. Huang, and D. Cheung, Deposition of stable, low kappa and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films. Thin Solid Films, 1997. 308: p. 507-511. [11] J. P. Reynard, C. Verove, E. Sabouret, P. Motte, B. Descouts, C. Chaton, J. Michailos, and K. Barla, Integration of fluorine-doped silicon oxide in copper pilot line for 0.12-μm technology. Microelectronic Engineering, 2002. 60(1–2): p. 113-118. [12] W. Volksen, R. D. Miller, and G. Dubois, Low Dielectric Constant Materials. Chemical Reviews, 2010. 110(1): p. 56-110. [13] M. Tada, H. Yamamoto, F. Ito, T. Takeuchi, N. Furutake, and Y. Hayashi, Chemical structure effects of ring-type siloxane precursors on properties of plasma-polymerized porous SiOCH films. Journal of the Electrochemical Society, 2007. 154(7): p. D354-D361. [14] R. Fabian Pease, Liqun Han, Gil I. Winograd, W. D. Meisburger, Dan Pickard, and M. A. McCord, Prospects for charged particle lithography as a manufacturing technology. Microelectronic Engineering, 2000. 53(1–4): p. 55-60. [15] C. Murray, C. Flannery, I. Streiter, S. E. Schulz, M. R. Baklanov, K. P. Mogilnikov, C. Himcinschi, M. Friedrich, D. R. T. Zahn, and T. Gessner, Comparison of techniques to characterise the density, porosity and elastic modulus of porous low-k SiO2 xerogel films. Microelectronic Engineering, 2002. 60(1–2): p. 133-141. [16] A trademark of Honeywell. For more information about the material see www.electronicmaterials.com. [17] A trademark of Dow Corning. For more information about the material see www.dowcorning.com. [18] A trademark of Novellus Systems. For more information about the material see www.novellus.com. [19] A trademark of ASM. For more information about the material see www.asm.com. [20] A trademark of Applied Materials. For more information about the material see www.appliedmaterials.com. [21] J. G. Wang, H. K. Kim, F. G. Shi, B. Zhao, and T. G. Nieh, Thickness dependence of morphology and mechanical properties of on-wafer low-k PTFE dielectric films. Thin Solid Films, 2000. 377: p. 413-417. [22] S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G. E. Fryxell, S. Thevuthasan, and R. E. Williford, Low Dielectric Constant Mesoporous Silica Films Through Molecularly Templated Synthesis. Advanced Materials, 2000. 12(4): p. 291-294. [23] Y. Yan, H. Wang, A. Mitra, and L. Huang, Pure-silica-zeolite low-k dielectric thin films. Adv. Mater., 2001. 13: p. 746. [24] 李潔如 牟中原, 微胞、微乳液的形成. Science Monthly, 1994. 298. [25] A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, and B. F. Chmelka, COOPERATIVE ORGANIZATION OF INORGANIC-SURFACTANT AND BIOMIMETIC ASSEMBLIES. Science, 1995. 267(5201): p. 1138-1143. [26] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Sshmitt, C. T.-W. Chu, D. H. Oksen, E. W. Sheppared, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, A new family of mesoporous molecular sieve prepared with liquid crystal templated. J. Am. Chem. Soc., 1992. 114: p. 10834. [27] D. Zhau, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D.Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998. 279: p. 548. [28] S. Baskaran, J. Liu, and K. Domansky, Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv. Mater., 2000. 12: p. 291. [29] C.-Y. Ting, D. -F. Ouyan, and B.-Z. Wan, Preparation of ultralow dielectric-constant porous silica films using Tween 80 as a template. Journal of the Electrochemical Society, 2003. 150(8): p. F164-F167. [30] C.-Y. Ting, D.-F. Ouyan, W.-F. Wu, and B.-Z. Wan, Template effects on low k materials made from spin-on mesoporous silica, in Nanotechnology in Mesostructured Materials, S.E. Park, R. Ryoo, W.S. Ahn, C.W. Lee, and J.S. Chang, Editors. 2003, Elsevier Science Bv: Amsterdam. p. 391-394. [31] C.-Y. Ting, C.-A. Wu, B.-Z. Wan, and W.-F. Wu, Low dielectric constant silica films prepared by a templating method. Journal of the Chinese Institute of Chemical Engineers, 2003. 34(2): p. 211-217. [32] A. T. Cho, F. M. Pan, K. J. Chao, P. H. Liu, and J. Y. Chen, The preparation of mesoporous silica ultra-low-k film using ozone ashing treatment. Thin Solid Films, 2005. 483(1-2): p. 283-286. [33] S. M. Zhu, S. Q. Ding, H. A. Xi, Q. Li, and R. D. Wang, Preparation and characterization of SiC/cordierite composite porous ceramics. Ceramics International, 2007. 33(1): p. 115-118. [34] M. E. Davis and R. F. Lobo, ZEOLITE AND MOLECULAR-SIEVE SYNTHESIS. Chemistry of Materials, 1992. 4(4): p. 756-768. [35] Z. B. Wang, A. P. Mitra, H. T. Wang, L. M. Huang, and Y. S. Yan, Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Advanced Materials, 2001. 13(19): p. 1463-+. [36] Z. B. Wang, H. T. Wang, A. Mitra, L. M. Huang, and Y. S. Yan, Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001. 13(10): p. 746-749. [37] Z. J. Li, S. Li, H. M. Luo, and Y. S. Yan, Effects of crystallinity in spin-on pure-silica-zeolite MFI low-dielectric-constant films. Advanced Functional Materials, 2004. 14(10): p. 1019-1024. [38] Guoqing Guan Nobuhiro Hata, Takenobu Yoshino, Syozo Takada, Zeolite nano-crystal suspension, zeolite nano-crystal production method, zeolite nano-crystal suspension production method, and zeolite thin film, in United States Patent2008, National Institute of Advanced Industrial Science and Technology, Tokyo (lP). [39] S. Eslava, C. E. A. Kirschhock, S. Aldea, M. R. Baklanov, F. Iacopi, K. Maex, and J. A. Martens, Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009. 118(1-3): p. 458-466. [40] H.-Y. Lu, C.-L. Teng, C.-W. Yu, Y.-C. Liu, and B.-Z. Wan, Addition of Surfactant Tween 80 in Coating Solutions for Making Mesoporous Pure Silica Zeolite MFI Low-k Films. Industrial & Engineering Chemistry Research, 2010. 49(14): p. 6279-6286. [41] H.-Y. Lu, C.-L. Teng, C.-H. Kung, and B.-Z. Wan, Preparing Mesoporous Low-k Films with High Mechanical Strength from Noncrystalline Silica Particles. Industrial & Engineering Chemistry Research, 2011. 50(6): p. 3265-3273. [42] International Zeolite Association. For more information about IZA see http://www.iza-structure.org/. [43] Z. J. Li, C. M. Lew, S. Li, D. I. Medina, and Y. S. Yan, Pure-silica-zeolite MEL low-k films from nanoparticle suspensions. Journal of Physical Chemistry B, 2005. 109(18): p. 8652-8658. [44] T. Seo, T. Yoshino, Y. Cho, N. Hata, and T. Kikkawa, Electrical characteristics of mesoporous pure-silica-zeolite film. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007. 46(9A): p. 5742-5746. [45] C. M. Lew, Z. J. Li, S. Li, S. J. Hwang, Y. Liu, D. I. Medina, M. W. Sun, J. L. Wang, M. E. Davis, and Y. S. Yan, Pure-Silica-Zeolite MFI and MEL Low-Dielectric-Constant Films with Fluoro-Organic Functionalization. Advanced Functional Materials, 2008. 18(21): p. 3454-3460. [46] T. Yoshino, N. Ohnuki, N. Hata, and Y. Seino, Young's Modulus Enhancement of Mesoporous Pure-Silica-Zeolite Low-Dielectric-Constant Films by Ultraviolet and Silylation Treatments. Japanese Journal of Applied Physics, 2009. 48(5). [47] C. M. Lew, Y. Liu, D. Kisailus, G. M. Kloster, G. Chow, B. Boyanov, M. W. Sun, J. L. Wang, and Y. S. Yan, Insight into On-Wafer Crystallization of Pure-Silica-Zeolite Films through Nutrient Replenishment. Langmuir, 2011. 27(7): p. 3283-3285. [48] Anupam Mitra, Cao, WangWang, Limin Huang, Shuang Li, Li, and Yan, Synthesis and Evaluation of Pure-Silica-Zeolite BEA as Low Dielectric Constant Material for Microprocessors†. Industrial & Engineering Chemistry Research, 2003. 43(12): p. 2946-2949. [49] S. Mintova, M. Reinelt, T. H. Metzger, J. Senker, and T. Bein, Pure silica beta colloidal zeolite assembled in thin films. Chemical Communications, 2003(3): p. 326-327. [50] Yanli Chen, Guangshan Zhu, Ye Peng, Hai Bi, Jing Feng, and Shilun Qiu, Synthesis and characterization of pure-silica-zeolite Beta low-k thin films. Microporous and Mesoporous Materials, 2009. 123(1–3): p. 45-49. [51] C. M. Lew, Y. Liu, B. Day, G. A. Kloster, H. Tiznado, M. W. Sun, F. Zaera, J. L. Wang, and Y. S. Yan, Hydrofluoric-Acid-Resistant and Hydrophobic Pure-Silica-Zeolite MEL Low-Dielectric-Constant Films. Langmuir, 2009. 25(9): p. 5039-5044. [52] T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Effect of Silylation Hardening on the Electrical Characteristics of Mesoporous Pure Silica Zeolite Film. Journal of the Electrochemical Society, 2009. 156(2): p. H98-H105. [53] Takamaro Kikkawa Yoshinori Cho, Method for producing low-k film, semiconductor device, and method for manufacturing the same, in United States Patent2011, Elpida Memory, Inc., Tokyo (JP). [54] W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(6): p. 1564-1583. [55] John M. Hayes Dennis G. Peters, Gary M. Hieftje, Chemical separations and measurements : theory and practice of analytical chemistry1974, Philadelphia: Saunders. 731. [56] Warren E. Stewart R. Byron Bird, Edwin N. Lightfoot, Transport phenomena2001. [57] E. P. Barrett, L. G. Joyner, and P. P. Halenda, THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS. Journal of the American Chemical Society, 1951. 73(1): p. 373-380. [58] Chih-Yuan Ting, Hwo-Shuenn Sheu, Wen-Fa Wu, and Ben-Zu Wan, Porosity effects on properties of mesoporous silica low-k films prepared using tetraethylorthosilicate with different templates. Journal of the Electrochemical Society, 2007. 154(1): p. G1-G5. [59] P. T. Liu, T. C. Chang, H. Su, Y. S. Mor, Y. L. Yang, H. Chung, J. Hou, and S. M. Sze, Improvement in integration issues for organic low-k hybrid-organic-siloxane-polymer. Journal of the Electrochemical Society, 2001. 148(2): p. F30-F34. [60] A. Bertoluzza, C. Fagnano, M. A. Morelli, V. Gottardi, and M. Guglielmi, RAMAN AND INFRARED-SPECTRA ON SILICA-GEL EVOLVING TOWARD GLASS. Journal of Non-Crystalline Solids, 1982. 48(1): p. 117-128. [61] R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, and D. K. Gautam, Growth and characterization of SiON thin films by using thermal-CVD machine. Optical Materials, 2004. 25(1): p. 1-7. [62] Y. Kayaba, T. Sato, Y. Seino, T. Yamamoto, and T. Kikkawa, Ionic Vibration Spectrum of Nanocrystalline MEL Pure Silica Zeolite Film. Journal of Physical Chemistry C, 2011. 115(23): p. 11569-11574. [63] F. Ay and A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 2004. 26(1): p. 33-46. [64] Craig B. Fryhle T. W. Graham Solomons, Organic chemistry. [65] T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Influence of Synthesis Process on Mechanical and Electrical Characteristics of Mesoporous Pure Silica-Zeolite. Journal of the Electrochemical Society, 2011. 158(6): p. H659-H665. [66] I. R. McKerracher, L. Fu, H. H. Tan, and C. Jagadish, Thermal expansion coefficients and composition of sputter-deposited silicon oxynitride thin films. Journal of Physics D-Applied Physics, 2010. 43(33). [67] Okada Yasumasa, Properties of Crystalline Silicon. Diamond cubic Si: structure, lattice parameter and density1999: INSPEC, The Institution of Electrical Engineers. [68] Chiara Dalconi Cruciani Giuseppe, Orazio Ferro, Simona Quartieri, Giovanna Vezzalini, Stefano Zanardi,, Thermal Behaviour of Natural Zeolites from Mt. Adamson(Antarctica) 2001, European Synchrotron Radiation Facility. [69] D. S. Bhange and V. Ramaswamy, Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure. Materials Research Bulletin, 2006. 41(7): p. 1392-1402. [70] D. S. Bhange and V. Ramaswamy, Thermal expansion studies of silicalite-2 molecular sieves of MEL (ZSM-11) topology. Journal of Porous Materials, 2012. 19(3): p. 301-305. [71] B. Lee, W. Oh, Y. Hwang, Y. H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K. W. Kim, and M. Ree, Imprinting well-controlled nanopores in organosilicate dielectric films: Triethoxysilyl-modified six-armed poly(epsilon-caprolactone) and its chemical hybridization with an organosilicate precursor. Advanced Materials, 2005. 17(6): p. 696-+. [72] S. Eslava, M. R. Baklanov, A. V. Neimark, F. Iacopi, C. E. A. Kirschhock, K. Maex, and J. A. Martens, Evidence of large voids in pure-silica-zeolite low-k dielectrics synthesized by spin-on of nanoparticle suspensions. Advanced Materials, 2008. 20(16): p. 3110-3116. [73] L. Sierra, B. Lopez, H. Gil, and J. L. Guth, Synthesis of mesoporous silica from sodium silica solutions and a poly(ethylene oxide)-based surfactant. Advanced Materials, 1999. 11(4): p. 307-311. [74] M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, and F. J. Romero, Poly(ethylene oxide)-based surfactants as templates for the synthesis of mesoporous silica materials. Journal of Colloid and Interface Science, 2004. 269(2): p. 394-402. [75] D. Uzcategui and G. Gonzalez, Study of the kinetics of crystallization of zeolite MEL. Catalysis Today, 2005. 107-08: p. 901-905. [76] MSDS from Acros. For more information about the MSDS see http://www.acros.com/. [77] C. A. Fyfe, H. Gies, G. T. Kokotailo, C. Pasztor, H. Strobl, and D. E. Cox, DETAILED INVESTIGATION OF THE LATTICE STRUCTURE OF ZEOLITE ZSM-11 BY A COMBINATION OF SOLID-STATE NMR AND SYNCHROTRON X-RAY-DIFFRACTION TECHNIQUES. Journal of the American Chemical Society, 1989. 111(7): p. 2470-2474. [78] Ralph K. Iler, The chemistry of silica1979: Wiley. 377. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64841 | - |
| dc.description.abstract | 近年來有很多文獻利用純二氧化矽沸石之鍍膜溶液,製備孔洞二氧化矽低介電(low-k)薄膜。但是發展至今,僅四丙基氫氧化銨(TPAOH)所製備的MFI沸石薄膜能符合未來積體電路工業應用條件(介電係數小於2,硬度大於1 GPa,彈性係數大於10 GPa)。然而比起MFI沸石,BEA和MEL沸石的結構密度更低,應更有潛力製備二氧化矽低介電薄膜。因此本研究是利用不同的四烷基氫氧化銨(TEAOH、TPAOH、TBAOH)當作鹼性試劑,以水熱24小時及水熱36小時程序,分別合成BEA、MFI、MEL沸石並用來製備低介電薄膜,除了期望能符合工業應用條件之外,還要分析BEA、MFI以及MEL沸石在薄膜製備過程中可能發生的機制,供日後改善製程以及其他應用的參考。
實驗結果發現,僅MFI沸石薄膜能符合工業需求。而MEL沸石薄膜除了k值偏高之外,其他條件也能符合工業需求;BEA沸石薄膜最大的問題是漏電流普遍偏高。整體來說,這些不同沸石薄膜最大的差異在於k值以及漏電流,為了探究造成電性差異的原因,本研究以FTIR分析薄膜中尚未被修飾的Si-OH基團,並證實了的確是這些Si-OH基團造成薄膜電性差異的主因。 為了分析造成差異的原因,本研究先以solid state 29Si NMR分析鍍液於鍛燒前的Si-OH基團比例,結果發現鍛燒前Si-OH基團比例較高的鍍液,其製備的薄膜經鍛燒修飾後的Si-OH基團比例反而最低,呈現相反趨勢。因此本研究進一步以TGA/DTA及solid state 29Si NMR討論鍍液中界面活性劑Tween80與這些不同表面特性沸石之作用力,再推論鍛燒前,到鍛燒修飾後可能發生的機制。本研究推論,當沸石與Tween80作用力越強,其Si-OH基團可能裸露於孔壁上,因此比較容易修飾為疏水基,使薄膜有較低之k值以及漏電流。 本研究結果發現,薄膜內殘留的Si-OH基團比例、沸石與Tween80之作用力、沸石的熱膨脹係數薄膜皆會影響薄膜性質。而本研究中最佳的薄膜是MFI沸石薄膜,k值為1.94,硬度是1.72 GPa,彈性係數是14.95 GPa,漏電流1.24×10^(-8) A/cm2,均能符合未來工業需求。 | zh_TW |
| dc.description.abstract | The synthesis of coating solutions with pure silica zeolite (PSZ) for porous low dielectric constant (low-k) films has been reported in literatures. However, only MFI zeolite low-k films were reported to solve the requirements of future integrated circuit (IC) industry, which are that k values below 2, elastic modulus higher than 10 GPa and hardness more than 1 GPa. The other types of zeolite (such as BEA and MEL) which have lower framework densities than that of MFI zeolite should have possessed higher porosity for making films with lower k values, but have not been thoroughly investigated. Therefore, in this research, by using TPAOH, TBAOH and TEAOH as templates, PSZ MFI, MEL, and BEA colloidal solutions have been synthesized through hydrothermal processes. Different zeolite type low-k films have been coated. The properties of those films were examined and discussed in details.
It has been found from this research that the films prepared with BEA and MEL zeolites still cannot meet the requirements of future IC industry. In general, k values and leakage current densities are higher than those expected. FTIR experiments were carried out to investigate the causes. It has been found that they are correlated to the Si-OH groups remaining within the films after the surface modification by using silane. More Si-OH groups within the films would be resulting higher k values and leakage current. Experiments of solid state 29Si NMR have also been employed to study Si-OH of dried powder samples (without calcined) from coating solutions. However, the results of dried powder samples were opposite to the results from the films. To study the phenomena, the interaction between surfactants and silica particles was checked by using thermal analyses. It has been inferred from this research that the stronger interaction strength can cause more Si-OH groups to expose on the surface of pore walls and to be easier modified to be hydrophobic. Therefore, the resulting films can contain less Si-OH remaining and can possess both of lower k values and lower leakage current. It has been found in this research that the Si-OH remaining within the films, the thermal expansion coefficient of silica species, and the interaction between surfactants and silica species are important factors to influence the properties of low-k films. It is still that only low-k film synthesized from PSZ MFI can meet the requirements of future IC industry, with k value lower than 2, leakage current densities lower than 10^(-6) A/cm2, elastic modulus higher than 10 GPa and hardness higher than 1 GPa. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:01:17Z (GMT). No. of bitstreams: 1 ntu-101-R99524063-1.pdf: 4255494 bytes, checksum: eaebfb1daf66abd9945292f446c8db36 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV 第一章 緒論 1 1-1 研究背景 1 1-2 低介電材料 2 1-3 孔洞二氧化矽材料 5 1-4 界面活性劑模板法 6 1-5 水熱法 9 1-5.1 MFI沸石薄膜 9 1-5.2 MEL、BEA沸石薄膜 11 1-6 研究目標 12 第二章 實驗 14 2-1 實驗藥品 14 2-2 實驗儀器 15 2-3 實驗步驟 16 2-3.1 矽晶圓的清洗與表面親水化 16 2-3.2 製備鍍液 17 2-3.3 旋轉塗佈 18 2-3.4 熱處理:軟烤與鍛燒 18 2-3.5 表面修飾 19 2-4 薄膜鑑定 20 2-4.1 電性量測 20 2-4.2 電子顯微鏡觀測 23 2-4.3 機械強度量測 23 2-4.4 傅立葉轉換光譜儀分析 24 2-5 溶液性質鑑定 26 2-5.1 粒徑分析實驗 26 2-6 粉末性質鑑定 26 2-6.1 固態核磁共振儀分析 27 2-6.2 熱重分析儀分析 27 2-6.3 X光粉末繞射分析 28 2-6.4 氮氣吸脫附分析 28 第三章 結果與討論 29 3-1 不同鹼性試劑所製備的薄膜性質 29 3-2 討論水熱24小時製程 31 3-2.1 薄膜中Si-OH基團的鑑定 31 3-2.2 熱膨脹係數對電性的影響 36 3-2.3 不同沸石鍍液的粉末空隙度與孔洞分析 38 3-2.4 鍍液粉末於鍛燒前之Si-OH基團鍵結 40 3-2.5 不同沸石與Tween80之作用力 42 3-2.6 鍛燒前到鍛燒修飾後的機制對薄膜電性之影響 51 3-2.7 沸石與Tween80之作用力對薄膜機械強度的影響 52 3-2.8 小結 55 3-3 討論水熱36小時製程 55 3-3.1 影響電性的因素 56 3-3.2 水熱時間對不同沸石的影響 60 3-3.3 不同沸石鍍液的粉末空隙度與孔洞分析 61 3-3.4 鍍液粉末於鍛燒前之Si-OH基團鍵結 64 3-3.5 不同沸石與Tween80之作用力 65 3-3.6 沸石與Tween80之作用力對薄膜電性與機械強度之影響 71 3-3.7 小結 73 第四章 製程改進 74 4-1 前言 74 4-2 實驗 76 4-3 水熱溫度對MEL沸石的粒徑以及結晶度的影響 77 4-4 改進製程的薄膜數值 78 4-5 與國際文獻之比較 79 第五章 結論 81 第六章 參考文獻 82 第七章 附錄 89 7-1 以TMAOH為鹼性試劑 89 7-2 TGA中鹼性試劑燃燒峰代表的意義 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | MFI沸石 | zh_TW |
| dc.subject | MEL沸石 | zh_TW |
| dc.subject | BEA沸石 | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | 低介電係數薄膜 | zh_TW |
| dc.subject | low dielectric constant (low-k) film | en |
| dc.subject | Pure silica zeolite (PSZ) MFI | en |
| dc.subject | PSZ MEL | en |
| dc.subject | PSZ BEA | en |
| dc.subject | surfactant | en |
| dc.title | 以不同的四烷基氫氧化銨為鹼性試劑製備孔洞型二氧化矽低介電薄膜 | zh_TW |
| dc.title | Preparation of Porous Silica Low-k Film by Using Different Tetraalkylammonium Hydroxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),吳文發(Wen-Fa Wu) | |
| dc.subject.keyword | MFI沸石,MEL沸石,BEA沸石,界面活性劑,低介電係數薄膜, | zh_TW |
| dc.subject.keyword | Pure silica zeolite (PSZ) MFI,PSZ MEL,PSZ BEA,surfactant,low dielectric constant (low-k) film, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
