請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64832完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(JianJang Huang) | |
| dc.contributor.author | Yu-Ting Wang | en |
| dc.contributor.author | 王佑廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:00:45Z | - |
| dc.date.available | 2017-03-05 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | [1] Green, M.A., et al., “Solar cell efficiency tables (version 33),” Progress in
Photovoltaics, vol 17, pp. 85-94, 2009.. [2] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, “Phosphor-Conversion white light emitting diode using InGaN near- ultraviolet chip,” Jpn. J. Appl. Phys., vol. 41, pp. L371–L373, 2002. [3] E. F. Schubert and J. K. Kim, “Solid-State light sources getting smart,” Science, vol. 308, pp. 1274–1278, 2005. [4] www.LightEmittingDiodes.org [5] Zhu, J., et al., “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters”, vol. 9, pp. 279-282, 2009. [6] Zhu et al, “Nanodome solar cells with efficient light management and self-cleaning”, Nano Lett., vol. 10, pp. 1979-1984, 2009. [7] Chen, C.P., et al., “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cellapplications”, Nanotechnology, vol. 20(24), pp. 245204-1 -245204-6, 2009.. [8] Matsui, H., et al., “Correlation between micro-roughness, surface chemistry, and performance of crystalline Si/amorphous Si : H : Cl hetero-junction solar cells”, Journal of Non-Crystalline Solids, vol. 354(19-25), pp. 2483-2487, 2008.. [9] Krc, J., et al., “Effect of surface roughness of ZnO : Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Films, pp. 296-304, 2003. [10] Campbell, P.R. and M.A. Green, “On intensity enhancement in textured optical sheets for solar-cells,” IEEE Transactions on Electron Devices, vol. 33(11), pp. 1834-1835, 1986. [11] Derrick, G.H., R.C. Mcphedran, and D.R. Mckenzie, “Theoretical-studies of textured amorphous-silicon solar-cells,” Applied Optics, vol. 25(20), pp. 3690-3696, 1986. [12] Campbell, P., “Light trapping in textured solar-cells,” Solar Energy Materials, vol. 21(2-3), pp. 165-172, 1990. [13] Takato, H., et al., “Effects of optical confinement in textured antireflection coating using ZnO films for solar-cells,” Japanese Journal of Applied Physics Part 2-Letters, vol. 31(12A), pp. L1665-L1667, 1992.. [14] Zhao, J.H., et al., “19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters, vol. 73(14), pp. 1991-1993, 1998. [15] Spiegel, M., et al., “Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 74(1-4), pp. 175-182, 2002. [16] Springer, J., et al., “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Solar Energy Materials and Solar Cells, vol. 85(1), pp. 1-11, 2005. [17] Hupkes, J., et al., “Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells,” Solar Energy Materials and Solar Cells, vol. 90(18-19), pp. 3054-3060, 2006.. [18] Muhida, R., et al., “Relationship between average slope of textured substrate and poly-Si thin film solar cells performance,” Materials Research Innovations, vol. 13(3), pp. 246-248, 2009.. [19] Kumar, P., et al., “Microcrystalline single and double junction silicon based solar cells entirely prepared by HWCVD on textured zinc oxide substrate,” Journal of Non-Crystalline Solids, vol. 352(9-20), pp. 1855-1858, 2006. [20] Mase, T., et al., “Amorphous-silicon solar-cells on textured aluminum substrate prepared by electrical etching,” Solar Cells, vol. 17(2-3), pp. 191-200, 1986. [21] Koida, T., H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells,” Solar Energy Materials and Solar Cells, vol. 93(6-7), pp. 851-854, 2009. [22] Koida, T., H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Applied Physics Express, vol. 1(4), pp. 041501-1-041501-3, 2008.. [23] Kawashima, T., et al., “FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology a-Chemistry, vol. 164(1-3), pp. 199-202, 2004. [24] Alamri, S.N. and A.W. Brinkman, “The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells,” Journal of Physics D-Applied Physics, vol. 33(1), pp. L1-L4, 2000. [25] Plattner, R., W. Stetter, and P. Kohler, “Transparent conductive tin-oxide layers for thin-film solar-cells,” Siemens Forschungs-Und Entwicklungsberichte-Siemens Research and Development Reports, vol. 17(3), pp. 138-146, 1988. [26] Gubbala, S., et al., “Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells,” Energy & Environmental Science, vol. 2(12), pp. 1302-1309, 2009. [27] Liu, J.P., et al., “Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires,” Applied Physics Letters, vol. 94(17), pp. 173107-1-173107-3, 2009. [28] Jeon, M. and K. Kamisako, “Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application,” Materials Letters, vol. 63(9-10), pp. 777-779, 2009. [29] Boercker, J.E., E. Enache-Pommer, and E.S. Aydil, “Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells,” Nanotechnology, vol. 19(9), pp. 095604-1-095604-10, 2008.. [30] Tian, B.Z., et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449(7164), p. 885-U8, 2007.. [31] Lok, C., “Nanowire solar cells - Building photovoltaics out of nanowires,” Technology Review, vol. 108(9), pp. 85-86, 2005. [32] Dmitruk, N.L., A.V. Korovin, and I.B. Mamontova, “Efficiency enhancement of surface barrier solar cells due to excitation of surface plasmon polaritons,” Semiconductor Science and Technology, vol. 24(12), pp. 125011-1-125011-7, 2009. [33] Losurdo, M., et al., “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Solar Energy Materials and Solar Cells, vol. 93(10), pp. 1749-1754, 2009. [34] Akimov, Y.A., K. Ostrikov, and E.P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar sells,” Plasmonics, vol. 4(2) pp. 107-113, 2009. [35] Chang, Y.C., et al., “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” Journal of Vacuum Science & Technology B, vol. 25(6), pp. 1899-1902, 2007.. [36] Pillai, S., et al., “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol. 101(9), pp. 093105-1-093105-8, 2007.. [37] Derkacs, D., et al., “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Applied Physics Letters, vol. 89(9), pp. 093103-1-093103-3, 2006. [38] Ishikawa, K., et al., “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” Journal of Chemical Engineering of Japan, vol. 37(5), pp. 645-649, 2004. [39] W. Lee, J. Limb, J. H. Ryou, D. Yoo, T. Chung, and R. D. Dupuis, “Influence of Growth Temperature and Growth Rate of p-GaN Layers on the Characteristics of Green Light Emitting Diodes,” J. of Electron. Mater., vol. 35, pp. 587-591, 2006. [40] H. W. Huang, C. C. Kao, J. T. Chu, W. D. Liang, H. C. Kuo, S. C. Wang, and C. C. Yu, “Improvement of InGaN–GaN Light-Emitting Diode Performance With a Nano-Roughened p-GaN Surface,” IEEE Photon. Technol. Lett., vol. 17, pp. 983-985, 2005. [41] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 15, pp. 1242-1249, 2009. [42] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography,” IEEE Electron Device Lett., vol. 29, pp. 658-660, 2008. [43] P. H. Chen, L. C. Chang, C. H. Tsai, Y. C. Lee, W. C. Lai, M. L. Wu, C. H. Kuo, and J. K. Sheu, “GaN-Based Light-Emitting Diodes With Pillar Structures Around the Mesa Region,” IEEE J. of Quantum Electron.., vol. 46, pp. 1066-1071, 2010. [44] C. F. Lai, C. H. Chao, H. C. Kuo, H. H. Yen, C. E. Lee, and W. Y. Yeh, “Directional light extraction enhancement from GaN-based film-transferred photonic crystal light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 123106, 2009. [45] T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett., vol. 94, p. 023101, 2009. [46] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, ”Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface,” IEEE Photon. Technol. Lett., vol. 20, pp. 803-805, 2008. [47] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang, and P. H. Wang, “Enhanced Light Output of GaN-Based Vertical-Structured Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser and Chemical Wet Etching,” IEEE Photon. Technol. Lett., vol. 22, pp. 1318-1320, 2010. [48] H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, “Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures,” Opt. Lett., vol. 33, pp. 1273-1275, 2008. [49] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999). [50] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004). [51] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, Appl. Phys. Lett. 89, 071109 (2006). [52] T.-X. Lee, C.-Y. Lin, S.-H. Ma, and C.-C. Sun, Opt. Express 13, 4175 (2005). [53] C.-C. Kao, et al., IEEE Photon. Technol. Lett. 19, 849 (2007). [54] D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.-I. Nagahama, and T. Mukai, Jpn. J. Appl. Phys. Part 1 43, 5945 (2004). [55] W. K. Wang, et al., Appl. Phys. Lett. 88, 181113 (2006). [56] A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, Appl. Phys. Lett. 88, 133514 (2006). [57] K.-M. Uang, S.-J. Wang, S.-L. Chen, Y.-C. Yang, T.-M. Chen, and B.-W. Liou, Jpn. J. Appl. Phys. Part 1 45, 3436 (2006). [58] B. J. Huang, C. W. Tang, and M. S. Wu, “System dynamics model of high-power LED luminaire,” Appl. Thermal Eng., vol. 29, pp. 609-616, 2009. [59] Y. Liu, Y. Wu, and B. An, “Optical simulation analysis of high power LED package structure,” in International Symposium on Advanced Packaging Materials, Wuhan, China, 2011, pp. 99-103. [60] http://www.gintechenergy.com/tw/ [61] Hermann A. Haus “Waves And Fields In Optoelectronics” [62] Junbo Feng, et al., “Polarization beam splitter using a binary grating coupler,” Optics Letters, Vol. 32, No.12, 2007. [63] Y. Liu, Y. Wu, and B. An, “Optical simulation analysis of high power LED package structure,” in International Symposium on Advanced Packaging Materials, Wuhan, China, 2011, pp. 99-103. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64832 | - |
| dc.description.abstract | 諸多奈米粒子的應用(如奈米小球微影術),一直被視為是一個製作表面奈米結構之快速且簡便的解決方案,而此製作於元件表面的奈米結構將可用以提昇如太陽能電池、發光二極體等光電元件的效能。然而,在這獲得改善的效能背後,卻仍有些議題與機制尚未獲得充分的研究與解釋。例如,針對太陽能電池而言,其入射光之反射率與光極化間的依存性;抑或針對發光二極體來說,已萃取的傳導模態其輻射行為與表面結構間的依存性等。
針對太陽能電池的第一個議題,我們對具有二氧化矽奈米小球鋪排於表面的太陽能電池與平面結構的太陽能電池進行探究與比較。我們發現到此奈米小球二維陣列對於電場垂直極化的光有較大的提升,而對磁場垂直極化的光幫助則較少,而這正好可以彌補電場垂直極化的光在光學上反射率較高的問題。 在本文的第二個段落中,除了經由單一表面圖案化製備的奈米柱之外,加上了截面微米圓頂結構的雙重表面圖案化亦於此處予以採用並研究之。結果顯示,發射光會因為與不同的單一表面結構作用,而發散至各種相對應之不同角度。而對於結合了奈米柱及微米圓頂的混合式結構來說,由於存在於半導體元件內部的各式的傳導模態,得以同時透過奈米柱抑或微米圓頂結構將其耦合出來,此種具混合式結構的發光二極體之光輸出增益,幾乎同等於具單一奈米柱結構以及單一微米圓頂結構的發光二極體之光輸出增益於特定方位上的線性疊加。藉由調變奈米柱與截面微米圓頂結構之相對蝕刻深度,本研究成果提供了一個操控光於不同方向上的增益強度之指導原則。 | zh_TW |
| dc.description.abstract | Various applications of nanoparticles, such like nanosphere lithography, is believed to be a fast and simple way to fabricate surface nanostructures and thus improve the performance of photonic device such as solar cell or LED. However, there’re still some issues and mechanisms behind not investigated or explained thoroughly, such like the polarization-dependent reflectivity of the incident light for solar cells or the texture-related radiation behaviors of the extracted guided light.
With the focus on the first issue, for solar cells, investigations had been made by comparing the properties of cells with silica nanospheres coated to the one without any surface structure. We found that the silica nanosphere arrays can improve the TE polarized light more significant than TM polarized light, which is a good way to compensate the larger reflectivity in TE polarized light for oblique incidence. In the second part, for vertical-injection LED (VLED), besides one-step nanorod surface patterning, a two-step surface patterning with the addition of truncated microdome arrays is further employed and investigated. The results suggest that light will be radiated to various angles while interacting with different single-step textured surfaces. As for the hybrid structure, since separate guided modes in the semiconductor layers are diffracted by either nanorods or microdomes, the percentage increase of light extraction from it is found to be about the linear superposition of both types of single surface textures at certain corresponding angle domain. The result provides a guideline of manipulating light enhancement distribution by adjusting the relative etch depth between nanorod and truncated microdome structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:00:45Z (GMT). No. of bitstreams: 1 ntu-101-R99941002-1.pdf: 4102090 bytes, checksum: e8e11523447b303cefe8823d2d55cc40 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1-1. Research background 1 1-2. Issues about solar cell and applications of nanostructure on it 5 1-3. Issues about LED and applications of nanostructure on it 8 Chapter 2 Effects of coated silica nanospheres on polycrystalline solar cells 13 2-1. Preface 13 2-2. Device fabrication and measurement 14 2-3. Characteristic discussions 18 2-4. Summary 29 Chapter 3 InGaN/GaN MQW vertical-injection LEDs with hybrid nanorod and truncated microdome surface texture 30 3-1. Preface 30 3-2. Fabrication of InGaN/GaN MQW VLEDs 31 3-3. Fabrication of surface texture on InGaN/GaN MQW VLEDs 33 3-4. Discussions on the radiation profiles and light extraction of vertical LEDs with hybrid surface textures 38 3-5. Further discussions about the effect of nanorod etching depth on the VLEDs with hybrid surface textures 48 3-6. Summary 48 Chapter 4 Conclusion 57 References 59 | |
| dc.language.iso | en | |
| dc.subject | 奈米小球 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 混合式表面結構 | zh_TW |
| dc.subject | 傳導模態 | zh_TW |
| dc.subject | 發光場型 | zh_TW |
| dc.subject | 極化 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | radiation profiles | en |
| dc.subject | polarization | en |
| dc.subject | light-emitting diodes | en |
| dc.subject | hybrid surface structure | en |
| dc.subject | guided modes | en |
| dc.subject | Solar cells | en |
| dc.title | 表面結構對太陽能電池與垂直式發光二極體之角度相依光學行為之效應 | zh_TW |
| dc.title | Effect of Surface Texturing on The Angular Dependent Optical Behaviors of Solar Cells and Vertical-Injection Light-emitting Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林恭如(Gong-Ru Ling),陳奕君(I-Chun Cheng),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 太陽能電池,奈米小球,極化,發光二極體,混合式表面結構,傳導模態,發光場型, | zh_TW |
| dc.subject.keyword | Solar cells,polarization,light-emitting diodes,hybrid surface structure,guided modes,radiation profiles, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
