Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(JianJang Huang)
dc.contributor.authorYu-Ting Wangen
dc.contributor.author王佑廷zh_TW
dc.date.accessioned2021-06-16T23:00:45Z-
dc.date.available2017-03-05
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] Green, M.A., et al., “Solar cell efficiency tables (version 33),” Progress in
Photovoltaics, vol 17, pp. 85-94, 2009..
[2] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai,
“Phosphor-Conversion white light emitting diode using InGaN near-
ultraviolet chip,” Jpn. J. Appl. Phys., vol. 41, pp. L371–L373, 2002.
[3] E. F. Schubert and J. K. Kim, “Solid-State light sources getting smart,”
Science, vol. 308, pp. 1274–1278, 2005.
[4] www.LightEmittingDiodes.org
[5] Zhu, J., et al., “Optical absorption enhancement in amorphous silicon
nanowire and nanocone arrays. Nano Letters”, vol. 9, pp. 279-282, 2009.
[6] Zhu et al, “Nanodome solar cells with efficient light management and
self-cleaning”, Nano Lett., vol. 10, pp. 1979-1984, 2009.
[7] Chen, C.P., et al., “Nanoparticle-coated n-ZnO/p-Si photodiodes with
improved photoresponsivities and acceptance angles for potential solar
cellapplications”, Nanotechnology, vol. 20(24), pp. 245204-1 -245204-6,
2009..
[8] Matsui, H., et al., “Correlation between micro-roughness, surface chemistry,
and performance of crystalline Si/amorphous Si : H : Cl hetero-junction solar
cells”, Journal of Non-Crystalline Solids, vol. 354(19-25), pp. 2483-2487,
2008..
[9] Krc, J., et al., “Effect of surface roughness of ZnO : Al films on light
scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Films,
pp. 296-304, 2003.
[10] Campbell, P.R. and M.A. Green, “On intensity enhancement in textured
optical sheets for solar-cells,” IEEE Transactions on Electron Devices, vol.
33(11), pp. 1834-1835, 1986.
[11] Derrick, G.H., R.C. Mcphedran, and D.R. Mckenzie, “Theoretical-studies of
textured amorphous-silicon solar-cells,” Applied Optics, vol. 25(20), pp.
3690-3696, 1986.
[12] Campbell, P., “Light trapping in textured solar-cells,” Solar Energy
Materials, vol. 21(2-3), pp. 165-172, 1990.
[13] Takato, H., et al., “Effects of optical confinement in textured antireflection
coating using ZnO films for solar-cells,” Japanese Journal of Applied Physics Part 2-Letters, vol. 31(12A), pp. L1665-L1667, 1992..
[14] Zhao, J.H., et al., “19.8% efficient 'honeycomb' textured multicrystalline
and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters, vol.
73(14), pp. 1991-1993, 1998.
[15] Spiegel, M., et al., “Industrially attractive front contact formation methods
for mechanically V-textured multicrystalline silicon solar cells,” Solar
Energy Materials and Solar Cells, vol. 74(1-4), pp. 175-182, 2002.
[16] Springer, J., et al., “Light trapping and optical losses in microcrystalline
silicon pin solar cells deposited on surface-textured glass/ZnO substrates,”
Solar Energy Materials and Solar Cells, vol. 85(1), pp. 1-11, 2005.
[17] Hupkes, J., et al., “Surface textured MF-sputtered ZnO films for
microcrystalline silicon-based thin-film solar cells,” Solar Energy Materials
and Solar Cells, vol. 90(18-19), pp. 3054-3060, 2006..
[18] Muhida, R., et al., “Relationship between average slope of textured substrate
and poly-Si thin film solar cells performance,” Materials Research Innovations, vol. 13(3), pp. 246-248, 2009..
[19] Kumar, P., et al., “Microcrystalline single and double junction silicon based
solar cells entirely prepared by HWCVD on textured zinc oxide substrate,”
Journal of Non-Crystalline Solids, vol. 352(9-20), pp. 1855-1858, 2006.
[20] Mase, T., et al., “Amorphous-silicon solar-cells on textured aluminum
substrate prepared by electrical etching,” Solar Cells, vol. 17(2-3), pp.
191-200, 1986.
[21] Koida, T., H. Fujiwara, and M. Kondo, “High-mobility hydrogen-doped
In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar
cells,” Solar Energy Materials and Solar Cells, vol. 93(6-7), pp. 851-854,
2009.
[22] Koida, T., H. Fujiwara, and M. Kondo, “Reduction of optical loss in
hydrogenated amorphous silicon/crystalline silicon heterojunction solar
cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,”
Applied Physics Express, vol. 1(4), pp. 041501-1-041501-3, 2008..
[23] Kawashima, T., et al., “FTO/ITO double-layered transparent conductive
oxide for dye-sensitized solar cells,” Journal of Photochemistry and
Photobiology a-Chemistry, vol. 164(1-3), pp. 199-202, 2004.
[24] Alamri, S.N. and A.W. Brinkman, “The effect of the transparent conductive
oxide on the performance of thin film CdS/CdTe solar cells,” Journal of
Physics D-Applied Physics, vol. 33(1), pp. L1-L4, 2000.
[25] Plattner, R., W. Stetter, and P. Kohler, “Transparent conductive tin-oxide
layers for thin-film solar-cells,” Siemens Forschungs-Und
Entwicklungsberichte-Siemens Research and Development Reports, vol. 17(3), pp. 138-146, 1988.
[26] Gubbala, S., et al., “Surface properties of SnO2 nanowires for enhanced
performance with dye-sensitized solar cells,” Energy & Environmental Science, vol. 2(12), pp. 1302-1309, 2009.
[27] Liu, J.P., et al., “Organic/inorganic hybrid solar cells with vertically oriented
ZnO nanowires,” Applied Physics Letters, vol. 94(17), pp. 173107-1-173107-3, 2009.
[28] Jeon, M. and K. Kamisako, “Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application,” Materials Letters, vol. 63(9-10), pp. 777-779, 2009.
[29] Boercker, J.E., E. Enache-Pommer, and E.S. Aydil, “Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells,” Nanotechnology, vol. 19(9), pp. 095604-1-095604-10, 2008..
[30] Tian, B.Z., et al., “Coaxial silicon nanowires as solar cells and nanoelectronic
power sources,” Nature, vol. 449(7164), p. 885-U8, 2007..
[31] Lok, C., “Nanowire solar cells - Building photovoltaics out of nanowires,” Technology Review, vol. 108(9), pp. 85-86, 2005.
[32] Dmitruk, N.L., A.V. Korovin, and I.B. Mamontova, “Efficiency
enhancement of surface barrier solar cells due to excitation of surface plasmon
polaritons,” Semiconductor Science and Technology, vol. 24(12), pp.
125011-1-125011-7, 2009.
[33] Losurdo, M., et al., “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Solar
Energy Materials and Solar Cells, vol. 93(10), pp. 1749-1754, 2009.
[34] Akimov, Y.A., K. Ostrikov, and E.P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar sells,” Plasmonics, vol. 4(2)
pp. 107-113, 2009.
[35] Chang, Y.C., et al., “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” Journal of Vacuum Science & Technology B, vol. 25(6), pp. 1899-1902, 2007..
[36] Pillai, S., et al., “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol. 101(9), pp. 093105-1-093105-8, 2007..
[37] Derkacs, D., et al., “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Applied Physics Letters, vol. 89(9), pp. 093103-1-093103-3, 2006.
[38] Ishikawa, K., et al., “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” Journal of Chemical Engineering of Japan, vol. 37(5), pp. 645-649, 2004.
[39] W. Lee, J. Limb, J. H. Ryou, D. Yoo, T. Chung, and R. D. Dupuis,
“Influence of Growth Temperature and Growth Rate of p-GaN Layers on the
Characteristics of Green Light Emitting Diodes,” J. of Electron. Mater., vol.
35, pp. 587-591, 2006.
[40] H. W. Huang, C. C. Kao, J. T. Chu, W. D. Liang, H. C. Kuo, S. C. Wang,
and C. C. Yu, “Improvement of InGaN–GaN Light-Emitting Diode
Performance With a Nano-Roughened p-GaN Surface,” IEEE Photon.
Technol. Lett., vol. 17, pp. 983-985, 2005.
[41] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W.
Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of Nanosphere
Lithography to LED Surface Texturing and to the Fabrication of Nanorod
LED Arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 15, pp. 1242-1249,
2009.
[42] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng,
Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J.
Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs
by SiO2 Nanosphere Lithography,” IEEE Electron Device Lett., vol. 29, pp.
658-660, 2008.
[43] P. H. Chen, L. C. Chang, C. H. Tsai, Y. C. Lee, W. C. Lai, M. L. Wu, C. H.
Kuo, and J. K. Sheu, “GaN-Based Light-Emitting Diodes With Pillar
Structures Around the Mesa Region,” IEEE J. of Quantum Electron.., vol. 46,
pp. 1066-1071, 2010.
[44] C. F. Lai, C. H. Chao, H. C. Kuo, H. H. Yen, C. E. Lee, and W. Y. Yeh,
“Directional light extraction enhancement from GaN-based film-transferred
photonic crystal light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 123106,
2009.
[45] T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C.
Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting
diode structures with a noninvasive two-dimensional photonic crystal,” Appl.
Phys. Lett., vol. 94, p. 023101, 2009.
[46] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, ”Further
Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection
Light-Emitting Diodes by Adopting a Roughened Mesh-Surface,” IEEE
Photon. Technol. Lett., vol. 20, pp. 803-805, 2008.
[47] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang,
and P. H. Wang, “Enhanced Light Output of GaN-Based Vertical-Structured
Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser
and Chemical Wet Etching,” IEEE Photon. Technol. Lett., vol. 22, pp.
1318-1320, 2010.
[48] H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak,
and T. Y. Seong, “Light-extraction enhancement of vertical-injection
GaN-based light-emitting diodes fabricated with highly integrated surface
textures,” Opt. Lett., vol. 33, pp. 1273-1275, 2008.
[49] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
[50] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura,
Appl. Phys. Lett. 84, 855 (2004).
[51] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald,
M. O. Holcomb, P. S. Martin, and M. R. Krames, Appl. Phys. Lett. 89,
071109 (2006).
[52] T.-X. Lee, C.-Y. Lin, S.-H. Ma, and C.-C. Sun, Opt.
Express 13, 4175 (2005).
[53] C.-C. Kao, et al., IEEE Photon. Technol. Lett. 19, 849 (2007).
[54] D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M.
Sano, S.-I. Nagahama, and T. Mukai, Jpn. J. Appl. Phys. Part 1 43, 5945
(2004).
[55] W. K. Wang, et al., Appl. Phys. Lett. 88, 181113 (2006).
[56] A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and
H. Benisty, Appl. Phys. Lett. 88, 133514 (2006).
[57] K.-M. Uang, S.-J. Wang, S.-L. Chen, Y.-C. Yang, T.-M. Chen, and B.-W.
Liou, Jpn. J. Appl. Phys. Part 1 45, 3436 (2006).
[58] B. J. Huang, C. W. Tang, and M. S. Wu, “System dynamics model of
high-power LED luminaire,” Appl. Thermal Eng., vol. 29, pp. 609-616, 2009.
[59] Y. Liu, Y. Wu, and B. An, “Optical simulation analysis of high power
LED package structure,” in International Symposium on Advanced Packaging
Materials, Wuhan, China, 2011, pp. 99-103.
[60] http://www.gintechenergy.com/tw/
[61] Hermann A. Haus “Waves And Fields In Optoelectronics”
[62] Junbo Feng, et al., “Polarization beam splitter using a binary grating coupler,” Optics Letters, Vol. 32, No.12, 2007.
[63] Y. Liu, Y. Wu, and B. An, “Optical simulation analysis of high power LED package structure,” in International Symposium on Advanced Packaging Materials, Wuhan, China, 2011, pp. 99-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64832-
dc.description.abstract諸多奈米粒子的應用(如奈米小球微影術),一直被視為是一個製作表面奈米結構之快速且簡便的解決方案,而此製作於元件表面的奈米結構將可用以提昇如太陽能電池、發光二極體等光電元件的效能。然而,在這獲得改善的效能背後,卻仍有些議題與機制尚未獲得充分的研究與解釋。例如,針對太陽能電池而言,其入射光之反射率與光極化間的依存性;抑或針對發光二極體來說,已萃取的傳導模態其輻射行為與表面結構間的依存性等。
針對太陽能電池的第一個議題,我們對具有二氧化矽奈米小球鋪排於表面的太陽能電池與平面結構的太陽能電池進行探究與比較。我們發現到此奈米小球二維陣列對於電場垂直極化的光有較大的提升,而對磁場垂直極化的光幫助則較少,而這正好可以彌補電場垂直極化的光在光學上反射率較高的問題。
在本文的第二個段落中,除了經由單一表面圖案化製備的奈米柱之外,加上了截面微米圓頂結構的雙重表面圖案化亦於此處予以採用並研究之。結果顯示,發射光會因為與不同的單一表面結構作用,而發散至各種相對應之不同角度。而對於結合了奈米柱及微米圓頂的混合式結構來說,由於存在於半導體元件內部的各式的傳導模態,得以同時透過奈米柱抑或微米圓頂結構將其耦合出來,此種具混合式結構的發光二極體之光輸出增益,幾乎同等於具單一奈米柱結構以及單一微米圓頂結構的發光二極體之光輸出增益於特定方位上的線性疊加。藉由調變奈米柱與截面微米圓頂結構之相對蝕刻深度,本研究成果提供了一個操控光於不同方向上的增益強度之指導原則。
zh_TW
dc.description.abstractVarious applications of nanoparticles, such like nanosphere lithography, is believed to be a fast and simple way to fabricate surface nanostructures and thus improve the performance of photonic device such as solar cell or LED. However, there’re still some issues and mechanisms behind not investigated or explained thoroughly, such like the polarization-dependent reflectivity of the incident light for solar cells or the texture-related radiation behaviors of the extracted guided light.
With the focus on the first issue, for solar cells, investigations had been made by comparing the properties of cells with silica nanospheres coated to the one without any surface structure. We found that the silica nanosphere arrays can improve the TE polarized light more significant than TM polarized light, which is a good way to compensate the larger reflectivity in TE polarized light for oblique incidence.
In the second part, for vertical-injection LED (VLED), besides one-step nanorod surface patterning, a two-step surface patterning with the addition of truncated microdome arrays is further employed and investigated. The results suggest that light will be radiated to various angles while interacting with different single-step textured surfaces. As for the hybrid structure, since separate guided modes in the semiconductor layers are diffracted by either nanorods or microdomes, the percentage increase of light extraction from it is found to be about the linear superposition of both types of single surface textures at certain corresponding angle domain. The result provides a guideline of manipulating light enhancement distribution by adjusting the relative etch depth between nanorod and truncated microdome structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:00:45Z (GMT). No. of bitstreams: 1
ntu-101-R99941002-1.pdf: 4102090 bytes, checksum: e8e11523447b303cefe8823d2d55cc40 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1 Introduction 1
1-1. Research background 1
1-2. Issues about solar cell and applications of nanostructure on it 5
1-3. Issues about LED and applications of
nanostructure on it 8
Chapter 2 Effects of coated silica nanospheres on polycrystalline solar cells 13
2-1. Preface 13
2-2. Device fabrication and measurement 14
2-3. Characteristic discussions 18
2-4. Summary 29
Chapter 3 InGaN/GaN MQW vertical-injection LEDs
with hybrid nanorod and truncated microdome
surface texture 30
3-1. Preface 30
3-2. Fabrication of InGaN/GaN MQW VLEDs 31
3-3. Fabrication of surface texture on
InGaN/GaN MQW VLEDs 33
3-4. Discussions on the radiation profiles and
light extraction of vertical LEDs with
hybrid surface textures 38
3-5. Further discussions about the effect of
nanorod etching depth on the VLEDs with
hybrid surface textures 48
3-6. Summary 48
Chapter 4 Conclusion 57
References 59
dc.language.isoen
dc.subject奈米小球zh_TW
dc.subject發光二極體zh_TW
dc.subject混合式表面結構zh_TW
dc.subject傳導模態zh_TW
dc.subject發光場型zh_TW
dc.subject極化zh_TW
dc.subject太陽能電池zh_TW
dc.subjectradiation profilesen
dc.subjectpolarizationen
dc.subjectlight-emitting diodesen
dc.subjecthybrid surface structureen
dc.subjectguided modesen
dc.subjectSolar cellsen
dc.title表面結構對太陽能電池與垂直式發光二極體之角度相依光學行為之效應zh_TW
dc.titleEffect of Surface Texturing on The Angular Dependent Optical Behaviors of Solar Cells and Vertical-Injection Light-emitting Diodesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如(Gong-Ru Ling),陳奕君(I-Chun Cheng),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword太陽能電池,奈米小球,極化,發光二極體,混合式表面結構,傳導模態,發光場型,zh_TW
dc.subject.keywordSolar cells,polarization,light-emitting diodes,hybrid surface structure,guided modes,radiation profiles,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved