Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorYu-Jen Chengen
dc.contributor.author鄭余任zh_TW
dc.date.accessioned2021-06-16T23:00:33Z-
dc.date.available2013-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] S. Rylov, S. Reynolds, D. Storaska, B. Floyd, M. Kapur, T. Zwick, S. Gowda, and M. Sorna, “10+ Gb/s 90nm CMOS serial link demo in CBGA package,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1987- 1991, Sep. 2005.
[2] G. Balamurugan, B. Casper, J. Jaussi, M. Mansuri, F. O’Mahony, and J. Kennedy, “Modeling and analysis of high-speed I/O links,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 237-247, May 2009.
[3] H.-H. Chuang, C.-J. Hsu, M.-Z. Hong, D. Hsu, R. Huang, L.-C. Hsiao, and T.-L. Wu, “Signal/power integrity design strategy for low-cost package of high-speed memory I/O interfaces,” IEEE Electr. Des. Adv. Packag. Syst., pp.1-4, Dec. 2009.
[4] T.-L. Wu, H.-H. Chuang, and T.-K. Wang, “Overview of power integrity solutions on package and PCB: decoupling and EBG isolation,” IEEE Trans. Electromag. Compat., vol. 52, pp. 346-356, May 2010.
[5] J. Chandrasekhar, E. Engin, M. Swaminathan, K. Uriu, and T. Yamada, “Noise induced jitter in differential signaling,” in Proc. Elect. Compon. Technol. Conf., May 2008, pp. 1755-1761.
[6] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High Speed Digital System Design., Hoboken, NJ: Wiley, 2009.
[7] A. D. Grasso and S. Pennisi, “High-performance CMOS pseudo-differential amplifier,” in Proc. ISCAS, May 2005, vol. 2, pp. 1569-1572.
[8] P. Allen and D. Holberg, CMOS Analog Circuit Design, 2nd ed. Oxford, U.K.: Oxford Univ. Press, 2002, pp. 463-464.
[9] W.-D. Guo, J.-H. Lin, C.-M. Lin, T.-W. Huang, and R.-B. Wu, “Fast methodology for determining eye-diagram characteristics of lossy transmission line,” IEEE Trans. Adv. Packag., vol. 32, pp. 175-183, Feb. 2009.
[10] W. Yao, Y. Shi, L. He, and S. Pamarti, “Worst case timing jitter and amplitude noise in differential signaling,” Int. Symp. Quality Electron. Design (ISQED), San Jose, CA, Mar. 2009, pp. 40-46.
[11] M.-D. Wu, S.-M. Deng, R.-B. Wu, and P. Hsu, “Full-wave characterization of the mode conversion in a coplanar waveguide right-angled bend,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 11, pp. 2532-2538, Nov. 1995.
[12] C.-H. Tsai and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative permittivity metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 195-202, Jan. 2010.
[13] D. S. Britt, D. M. Hockansson, F. Sha, J. L. Drewniak, T. H. Hubing, and T. P. Van Doren, “Effects of gapped groundplanes and guard traces on radiated EMI,” IEEE Int. Symp. Electromagn. Compat., vol. 39, no. 3, pp. 159-164, Aug. 1997.
[14] A. B. Williams, “An active equalizer with adjustable amplitude and delay,” IEEE Trans. Circuit Theory, vol. 16, pp. 577-579, Nov. 1969.
[15] B. Ravelo, A. Perennec, and M. Le Roy, “Equalization of Interconnect Propagation Delay with Negative Group Delay Active Circuits,” 11th IEEE Workshop on SPI, Genova, Italy, pp. 15-18, May 2007.
[16] W.-D. Guo, F.-N. Tsai, G.-H. Shiue, and R.-B. Wu, “Reflection enhanced compensation of lossy traces for best eye-diagram improvement using high impedance mistmatch,” IEEE Trans. Adv. Packag., vol. 31, no. 3, pp. 619-626, Aug. 2008.
[17] E. Song, J. Kim, J. Kim, and J. Cho, “A compact, low-cost, and wide-band passive equalizer design using multi-layer PCB parasitics,” IEEE Trans. Elect. Perform. Electron. Packag., pp. 165-168, Oct. 2010.
[18] E. Song, J. Cho, J. Kim, Y. Shim, G. Kim, and J. Kim, “Modeling and design optimization of a wideband passive equalizer on PCB based on near-end crosstalk and reflections for high-speed serial data transmission,” IEEE Trans. Electromag. Compat., vol. 52, no. 2, pp. 410-420, May 2010.
[19] Y. Shim, W. Lee, E. Song, J. Cho, and J. Kim, “A compact and wide-band passive equalizer design using a stub with defected ground structure for high speed data transmission,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 256-258, May 2010.
[20] L. Zhang, W. Yu, Y. Zhang, R. Wang, A. Deutsch, G. A. Katopis, D. M. Dreps, J. Buckwalter E. S. Kuh, and C.-K. Cheng, “Analysis and optimization of low-Power passive equalizers for CPU-Memory links,” IEEE Trans. Compon. Packag. Manufacturing Tech., vol. 1, no. 9, pp. 1406-1418, Sep. 2011.
[21] M. A. Rappeport, “Automatic equalization of data transmission facility distortion using transversal equalizers,” IEEE Trans. Commun. Tech. vol. 12, pp. 65-73, Sep. 1964.
[22] I. Barhumi, G. Leus, and M. Moonen, “Time-varying FIR equalization for doubly selective channels,” IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 202-214, Jan. 2005.
[23] S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sep. 2007.
[24] C. Tidestav, A. Ahlen, and M. Sternad, “Realizable MIMO decision feedback equalizers: Structure and design,” IEEE Trans. Signal Processing, vol. 49, pp. 121-133, Jan. 2001.
[25] M. Q. Le, P. J. Hurst, and J. P. Keane, “An adaptive analog noise-predictive decision-feedback equalizer,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 105-113, Feb. 2002.
[26] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248-250, April 2008.
[27] S.-J. Wu, C.-H. Tsai, T.-L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for GHz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
[28] K. Yanagisawa, F. Zhang, T. Sato, K. Yanagisawa, and Y. Miura, “A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil,” IEEE Trans. Magn., vol.41, no. 10, pp. 3571-3573, Oct. 2005.
[29] B.-C. Tseng and L.-K. Wu, “Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic,” IEEE Trans. Electromagn. Compat., vol. 46, no. 4, pp. 571–579, Nov. 2004.
[30] C.-H. Tsai and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative- permittivity metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 195-202, Jan. 2010.
[31] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, DedHam, Mass., 1979.
[32] David M. Pozar, Microwave Engineering, Third Edition, John Wiley & Sons Inc, 2005.
[33] V. K. Tripathi, “Asymmetric coupled transmission lines in an inhomogeneous medium,” IEEE Trans. Microw. Theory Tech., vol. 18, pp. 616-626, 1970.
[34] C. L. Chao, “On the analysis of inhomogeneous asymmetrical coupled transmission lines,” 18th Mid-West Symp. Circuits and Systems, Montreal, pp. 568-572, 1975.
[35] S. L. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Design. Hoboken NJ: Wiley 2009.
[36] M. K. Krage and G. I. Haddad, “Characteristics of coupled microstrip transmission lines─II: Evaluation of coupled-line parameters,” IEEE Trans. Microw. Theory Tech., vol. 18, pp. 222-228, 1970.
[37] R. Garg. and I. J. Bahl, “Characteristics of coupled microstriplines,” IEEE Trans. Microw. Theory Tech., vol. 27, pp. 700-705, 1979.
[38] S. S. Bedair, “On the odd-mode capacitance of the coupled microstriplines,” IEEE Trans. Microw. Theory Tech., vol. 28, pp. 1225-1227, 1980.
[39] J. Fan, Y. Ren, and J. Chen, D. M. Hockason, H. Shi, J. L. Drewniak, T. H. Hubing, T. P. V. Doren, and R. E. DuBroff, “RF isolation using power islands in DC power bus design,” IEEE. Int. Symp. Electronmagn. Compat., pp. 838-843, Aug. 1999.
[40] X. H. Yang and W. X. Zhang, “Coplanar waveguide antenna arrays for MIC/MMIC at millimeter wave frequencies,” Electron. Lett., vol. 26, no. 18, pp. 1464-1465, Aug. 1990.
[41] W. Wang, S.-S. Zhong, and S.-B. Chen, “A novel wideband coplanar-fed monopole antenna,” Microw. Opt. Technol. Lett., vol. 43, pp. 50-52, 2004.
[42] Y.-K. Kuo, C.-H. Wang, and C.-H. Chen, “Novel reduced-size coplanar waveguide bandpass filters,” IEEE Microw. Wireless Compon. Lett., vol. 11, pp. 65-67, Feb. 2001.
[43] T. Tsujiguchi, H. Matsumoto, and T. Nishikawa, “A miniaturized end-coupled bandpass filter using λ/4 hair-pin coplanar resonators,” IEEE MTT-S Int. Microw. Symp. Dig., 1998, pp. 829-832.
[44] C.-H. Wang, Y.-S. Lin, H. Wang, and C.-H. Chen, “A Q-band uniplanar MMIC diode mixer with lumped-element coplanar waveguide-to-slotline transition,” IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp. 103-106.
[45] K. Hettak, G. A. Morin, and M. G. Stubbs, “A novel miniature multilayer MMIC CPW single side band CPW mixer for up conversion at 44.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 606-608, Sep. 2005.
[46] L. G. Maloratsky, Passive RF and Microwave Integrated Circuit Design, Elsevier, 2004.
[47] R. N. Simons, Coplanar Waveguide Circuits Components and Systems, John-Wiley & Sons, New York, 2001.
[48] N. I. Dib, “Theoretical characterization of coplanar waveguide transmission lines and discontinuities,” Ph. D. thesis, University of Michigan, Ann Arbor, MI, 1992.
[49] T. Hirota, Y. Tarusawa, and H. Ogawa, “Uniplanar MMICs and their applications,” IEEE Trans. Microw. Theory Tech., vol. 29, pp. 513-534, June 1981.
[50] E. Rius, J. P. Coupez, S. Toutain, C. Person, and P. Legaud, “Theoretical and experimental study of various types of compensated dielectric bridges for millimeter-wave coplanar application,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 152-156, Jan. 2000.
[51] J. B. Knorr and K. D. Kuchler, “Analysis of coupled slots and coplanar strips on dielectric substrate,” IEEE Trans. Microw. Theory Tech., vol. 23, pp. 541-548, July 1975.
[52] R. N. Simons and R. K. Arora, “Coupled slot line field components,” IEEE Trans. Microw. Theory Tech.,vol. 30, pp. 1094-1099, July 1982.
[53] HFSS, ver. 13. Ansoft Corporation. [Online]. Available: http://www. ansoft.com
[54] Advanced Design System, ver. 2009, Agilent Inc. [Online]. Available: http://www.agilent.com
[55] W. -D. Guo, “Eye-diagram analysis and compensation design of PCB-scale lossy transmission lines,” Ph.D. thesis, Dept. Elect. Eng., National Taiwan Univ., Taipei, Taiwan, Oct. 2008.
[56] L. Zhang, W. Yu, H. Zhu, A. Deutsch, G. A. Katopis, D. M. Dreps, E. Kuh, and C.-K. Cheng, “Low power passive equalizer optimization using tritonic step response,” IEEE/ACM Design Automation Conference, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64826-
dc.description.abstract在運用各種耦合傳輸線的高速差動信號傳輸系統中,維持差模信號的傳輸品質以及有效地抑制共模雜訊是確保接收端具有良好信號完整度的決定性因素。為此,我們提出了一個結合共模濾波器效果的新式被動等化器,其除了能夠等化差模信號外亦能過濾共模雜訊,名為「VCPW-R」。所提出之等化器可製作於封裝或印刷電路基板上,其具有價格低廉、體積小以及適用於不同傳輸速率之優點。
本論文將會先介紹幾種常見的耦合傳輸線,之後再描述所提出結構(即VCPW-R)的整體架構與相應的等效電路模型。此結構於差模及共模的傳輸特性分別利用奇模和偶模半電路進行分析。此外,我們也對此結構提出一個兼顧差模與共模傳輸特性之共設計流程,利用此設計流程針對8 Gb/s差動傳輸找出一組設計參數並用於實作測試電路板。根據實作板的頻域及時域量測結果,所提出結構之差模等化及共模濾波效果成功地獲得驗證。
zh_TW
dc.description.abstractIn high-speed differential signal transmission using various kinds of coupled lines, good signal integrity (SI) at the receiving end is mainly attributed to high quality of the transmitted differential-mode signal and effective suppression of the generated common-mode noise. In view of this, an innovative passive equalizer able to not only equalize differential-mode signals but also filter common-mode noise, named “VCPW-R”, is proposed so that the two modes can be well treated with a low cost, compact and adaptable structure on a package or PCB substrate.
After the discussion of the characteristic of typical coupled lines, the configuration and corresponding equivalent model of the proposed VCPW-R is described. The characteristics of the proposed structure under differential-mode and common-mode transmission are discussed separately with the corresponding half-circuit models. Based on the proposed co-design flow, which takes both modes into consideration, a set of the design parameters are determined for 8 Gb/s differential transmission and utilized in the fabrication of test boards. The frequency-domain and time-domain measurements of the test board successfully demonstrate the effectiveness of the proposed structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:00:33Z (GMT). No. of bitstreams: 1
ntu-101-R99942014-1.pdf: 2487283 bytes, checksum: c9f3a4bb48aecca643777e4ce2bd84a2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES viii
ACRONYMS ix
Chapter1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Review 2
1.3 Proposed Research and Thesis Outline 3
Chapter2 Fundamentals of Coupled Microstrip Lines and Coupled Slotlines 6
2.1 Configuration of Typical Coupled Lines 6
2.2 Coupled Microstrip Lines 8
2.2.1 Fundamental Modes and Odd/Even-Mode Technique 8
2.2.2 Electromagnetic Characteristics 12
2.3 Coupled Slotlines 18
2.3.1 Fundamental Modes and Odd/Even-Mode Technique 18
2.3.2 Electromagnetic Characteristics 22
Chapter3 Differential Lines over Proposed Via-Conducted Coplanar Waveguide with Resistive Load (VCPW-R) 25
3.1 Physical Configuration 25
3.2 Equivalent Circuit Model 27
3.3 Half Circuit Analysis 33
3.3.1 Odd-Mode Half Circuit Model 33
3.3.2 Even-Mode Half Circuit Model 38
Chapter4 Design and Optimization for VCPW-R 41
4.1 Design for Differential-Mode Equalization 41
4.1.1 Step Response of Transmission-Line Systems with VCPW-R 41
4.1.2 Optimization of Equalization Effect 48
4.1.3 Design Examples and Validation 50
4.2 Design for Common-Mode Filtering 55
4.2.1 Formula for Common-Mode Insertion Loss Scc21 55
4.2.2 Design Concept 58
4.3 Co-Design Consideration 59
Chapter5 Applications of Proposed VCPW-R: A Case Study 62
5.1 Overview on Test Samples and Measuring Instruments 62
5.2 Frequency-Domain Validation 66
5.3 Time-Domain Validation 69
Chapter 6 Conclusion 72
REFERENCE 74
PUBLICATION LIST 81
dc.language.isoen
dc.subject頻率相依損耗zh_TW
dc.subject信號完整度zh_TW
dc.subject共模抑制zh_TW
dc.subject耦合線zh_TW
dc.subject等化zh_TW
dc.subject差模等化器zh_TW
dc.subject高速差動傳輸zh_TW
dc.subjecthigh-speed differential transmissionen
dc.subjectCommon-mode suppressionen
dc.subjectcoupled linesen
dc.subjectdifferential-mode equalizeren
dc.subjectequalizationen
dc.subjectfrequency-dependent lossen
dc.subjectsignal integrityen
dc.title一用於兆赫層級差動信號傳輸兼具寬頻共模濾波特性之新穎差模等化器zh_TW
dc.titleA Novel Differential-Mode Equalizer with Broadband Common-Mode Filtering for Gbps Differential Signalingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李泰成,邱奕鵬,盧信嘉,邱政男
dc.subject.keyword共模抑制,耦合線,差模等化器,等化,頻率相依損耗,高速差動傳輸,信號完整度,zh_TW
dc.subject.keywordCommon-mode suppression,coupled lines,differential-mode equalizer,equalization,frequency-dependent loss,high-speed differential transmission,signal integrity,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved