Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秀敏
dc.contributor.authorYu-Lun Tsaien
dc.contributor.author蔡雨倫zh_TW
dc.date.accessioned2021-06-16T22:59:42Z-
dc.date.available2012-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citationAlabadi D, Gil J, Blazquez MA, Garcia-Martinez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134: 1050-1057
Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59: 281-311
Barthelemy X, Bouvier G, Radunz A, Docquier S, Schmid GH, Franck F (2000) Localization of NADPH-protochlorophyllide reductase in plastids of barley at different greening stages. Photosynth Res 64: 63-76
Bewley JD (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066
Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269: 240-248
Boyer PD (1997) The ATP synthase--a splendid molecular machine. Annu Rev Biochem 66: 717-749
Cao D, Froehlich JE, Zhang H, Cheng CL (2003) The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J 33: 107-118
Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A (2000) Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiol 124: 59-70
Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38: 87-117
Chou ML, Chu CC, Chen LJ, Akita M, Li Hm (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175: 893-900
Chou ML, Fitzpatrick LM, Tu SL, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li HM (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22: 2970-2980
Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci U S A 96: 6541-6546
de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451: 480-484
Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A, Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5
Ellis J (1987) Proteins as molecular chaperones. Nature 328: 378-379
Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13: 203-229
Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451: 475-479
Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8: 77-85
Haehnel W (1984) Photosynthetic sectron transport in higher plants. Annu Rev of Plant Physio 35: 659-693
Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574-581
Ifuku K, Endo T, Shikanai T, Aro EM (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52: 1560-1568
Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60: 407-431
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2: 1154-1180
Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11: 579-592
Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13: 425-436
Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61: 157-180
Lin Y, Cheng CL (1997) A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell 9: 21-35
Moller SG, Kunkel T, Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15: 90-103
Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11: 335-348
Nielsen E, Akita M, Davila-Aponte J, Keegstra K (1997) Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 16: 935-946
Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57: 739-759
Parks BM, Quail PH (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177-1186
Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147-157
Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J, Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci U S A 103: 4777-4782
Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57: 837-858
Schnell DJ, Blobel G, Keegstra K, Kessler F, Ko K, Soll J (1997) A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol 7: 303-304
Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69: 463-472
Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22: 205-220
Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58: 199-217
Shinomura T, Nagatani A, Chory J, Furuya M (1994) The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104: 363-371
Shipman RL, Inoue K (2009) Suborganellar localization of plastidic type I signal peptidase 1 depends on chloroplast development. FEBS Lett 583: 938-942
Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5: 198-208
Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The hy3 long hypocotyl mutant of Arabidopsis Is deficient in phytochrome B. Plant Cell 3: 1263-1274
Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22: 1516-1531
Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260: 289-297
Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci U S A 100: 16119-16124
Vandenbussche F, Verbelen JP, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. Bioessays 27: 275-284
Wang HaD, X.W. (2002) Phytochrome signaling mechanism. In C.R. Somerville and E.M. Meyerowitz, ed, The Arabidopsis book, American Society of Plant Biologists
Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59: 225-251
Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23: 1480-1493
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64804-
dc.description.abstract70 kD的熱休克蛋白 (heat shock protein 70 kD, Hsp70) 家族是細胞中普遍存在的伴護子 (chaperone),參與蛋白質轉位 (protein translocation)、摺疊 (folding) 及降解 (degradation) 的過程。植物葉綠體內的cpHsc70最近被發現參與在前驅蛋白 (precursor protein) 輸入葉綠體的轉位過程。因為Hsp70在細胞中參與的功能太多,需要J蛋白來協助Hsp70的功能專一性,但在葉綠體內的J蛋白至少有19個,所以我們實驗室欲找出幫助cpHsc70進行轉位作用的J蛋白。本篇文章裡研究的J25蛋白被預測具有穿膜區塊 (transmembrane domain),在本篇論文中,我發現J25不只位在類囊體膜 (thylakoid membrane)上,還有一小部分位在葉綠體內膜 (inner envelope membrane) 上。然而,從我的研究得知,j25突變株並不會造成蛋白質輸入葉綠體的過程受損。而此時,我們意外發現,在白光及紅光下生長的j25-1突變植株比起野生型有較長下胚軸 (hypocotyls) 的外表型,且j25與phyB (phytochrome B是最主要的紅光受器) 的雙突變株會有比兩個單突變株更長的下胚軸。另外,j25/phyB雙突變株種子的萌芽率也比兩個單突變株來的差。藉由j25突變株的特性分析,得知J25位在與紅光受器phyB不同的光訊息傳遞路徑上,讓我們得以將葉綠體的熱休克蛋白cpHsc70藉由J25與光傳導的訊息路徑做可能的連結。zh_TW
dc.description.abstractThe 70 kD heat shock proteins (Hsp70s) are involved in protein translocation, folding and degradation. We have recently shown that chloroplast Hsp70s, cpHsc70s, are involved in protein import into chloroplasts. Since the J protein cochaperones are drivers that recruit Hsp70 for specific functions, we intend to identify the J protein assisting cpHsc70s in chloroplast protein import. There are more than one hundred J proteins in Arabidopsis, and at least 19 of them are localized in chloroplasts. Among them, J25 is predicted to localize in membranes. I found that J25 has a dual localization: the majority of J25 is localized in the thylakoid membrane and a small portion is localized in the inner envelope membrane. However, the j25 mutants show no defect in the import of a model chloroplast precursor protein. Nonetheless, I found another interesting phenotype of the j25 mutants: one of the alleles has long hypocotyls when grown under white and red light and double mutants of both alleles with a phyB (phytochrome B, the major red light sensor of plants) mutant have an additive long hypocotyl phenotype under white light and red light. In addition, the j25/phyB double mutants have an additive defect in seeds germination. These data suggest that J25 is involved in light sensing and that J25 and phyB are involved in independent red light signaling pathways. Characterizations of J25 provide a possible link between chloroplast Hsp70 and light-regulated signal transduction.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:42Z (GMT). No. of bitstreams: 1
ntu-101-R99B43032-1.pdf: 3044594 bytes, checksum: 51a52d55ad3844b493ccac2205af3484 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents壹、 口試委員會審定書
貳、 誌謝………………………………………………………I
參、 中文摘要…………………………………………………II
肆、 英文摘要…………………………………………………III
伍、 目錄……………………………………………………IV-VI
陸、 前言…………………………………………………………1
柒、 材料與方法…………………………………………………5
1. 植物材料
2. 植物的種植與生長狀況
3. 引子
4. 檢驗阿拉伯芥突變株的T-DNA插入情形
5. 阿拉伯芥突變株的基因表現量分析
6. 阿拉伯芥突變株的蛋白質表現量分析
7. 阿拉伯芥葉綠體製備
8. 豌豆葉綠體製備
9. 抽取中量質體DNA
10. 活體外轉錄與轉譯
11. 活體外前驅蛋白質輸入葉綠體
12. 蛋白質濃度測定
13. 硫酸十二脂聚丙烯醯胺膠片的電泳分析
14. 西方墨點法
15. J25的定位分析
16. J25的抗體製備
17. 阿拉伯芥雙突變株的篩選
18. 阿拉伯芥幼苗的胚軸長度測量
19. 阿拉伯芥種子萌芽實驗
捌、 結果………………………………………………………25
1. 以J25-Ag1蛋白質做為抗原所製備的抗體可以成功辨認阿拉伯芥及豌豆的J25蛋白
2. J25為葉綠體內的穿膜蛋白 (integral membrane protein)
3. 內源性J25蛋白坐落在類囊體膜系 (thylakoid membrane) 及內膜 (inner envelope membrane) 上
4. j25-1及j25-2突變株中皆無可偵測到的J25蛋白,但j25-2仍有少部分的J25 mRNA存在
5. 南方墨點法 (Southern blot) 顯示j25-2為單個T-DNA插入的突變株,但j25-1很有可能含有其他的T-DNA插入位置
6. j25突變株不會造成蛋白質轉位的缺陷
7. j25/phyB 雙突變株在紅光及白光下生長的胚軸比j25及phyB單突變株的胚軸長
8. j25/phyB 雙突變株的萌芽率比j25及phyB單突變株還低
玖、 討論………………………………………………………31
壹拾、 參考文獻……………………………………………………...35
壹拾壹、 圖表………………………………………………………41
圖一、 葉綠體上的運輸機組示意圖
圖二、 電子傳遞鏈示意圖
圖三、 光敏素合成及特性示意圖
圖四、 J25被預測為是坐落在膜系上的葉綠體蛋白質
圖五、 純化J25-Ag1蛋白質做為製備J25抗體的抗原
圖六、 J25抗體可以成功辨認豌豆及阿拉伯芥葉綠體內的J25蛋白
圖七、 J25為葉綠體內的穿膜蛋白
圖八、 內源性J25可以抵抗嗜熱菌酶及胰蛋白酶
圖九、 J25的定位分析
圖十、 j25-1及j25-2突變株的特性分析
圖十一、 南方墨點法檢驗j25-1及j25-2的T-DNA插入情形
圖十二、 j25 突變株不會影響前驅蛋白輸入葉綠體的量
圖十三、 j25/phyB 雙突變株在白光下的下胚軸比單突變株長
圖十四、 j25/phyB 雙突變株在不同色光下的胚軸生長情形
圖十五、 j25/phyB雙突變株在黑暗中的萌芽率比野生型低
dc.language.isozh-TW
dc.subject葉綠體zh_TW
dc.subject熱休克蛋白zh_TW
dc.subject光zh_TW
dc.subject種子萌芽zh_TW
dc.subjectchloroplasten
dc.subjectheat shock proteinen
dc.subjectlighten
dc.subjectgerminationen
dc.title阿拉伯芥葉綠體蛋白J25的功能與特性分析zh_TW
dc.titleCharacterizations of Arabidopsis Chloroplast J Protein J25en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee涂世隆,蘇百祥,吳素幸
dc.subject.keyword葉綠體,熱休克蛋白,光,種子萌芽,zh_TW
dc.subject.keywordchloroplast,heat shock protein,light,germination,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved