Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64792
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉
dc.contributor.authorMeng-Chun Tsengen
dc.contributor.author曾盟群zh_TW
dc.date.accessioned2021-06-16T22:59:25Z-
dc.date.available2017-08-16
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citation吳永培。2001。影響米食味良劣之因素及利用近紅外光線光譜儀分析米質之研究。國立臺灣大學農藝學研究所博士論文。
吳以健。2009。溫度環境與水稻穀粒產量及品質之相關性。國立臺灣大學農藝學研究所碩士論文。
吳啟瑞。2006。利用不同直鏈澱粉含量之系列稻米品種為模式探討粉膠體特性因子。 國立臺灣大學食品研究所碩士論文。
林再發。1984。水稻高產品種之選育特別論及臺中秈17號。臺中區農業改良場研究彙報。8:29-40。
林崇正、李長沛、鄭舒允、林育宗、許愛娜、曾富生、吳詩都、古新梅。2007。利用水稻 SSR 分子標幟偵測影響米質的數量性狀基因座。作物、環境與生物資訊。4:269-284。
金漢煊。2011。水稻紫色葉鞘基因之定位選殖、基因表現與分子演化。國立臺灣大學農藝學研究所碩士論文。
許志聖、楊嘉凌。2009。水稻臺中秈17號。臺中區農業改良場歷年育成品種專輯。70-71頁。
許愛娜、朱德民、白鏹、吳永培。2012。水稻米飯食味特性迴歸模式之建立。臺灣農學會報。13:45-69。
郭耀宗。1988。臺灣地區稻米品質改進現況與展望。稻米品質研討會專集。9-19頁。
潘成玉。2005。氮素對水稻穀粒蛋白質及品質形成之影響。國立臺灣大學農藝學研究所碩士論文。
潘昶儒。2010。花蓮地區氣溫環境與水稻品種間稻穀產量及品質之相關性。國立臺灣大學農藝學研究所碩士論文。
Aykroyd W. (1932) The effect of parboiling and milling on the antineuritic vitamin (B 1) and phosphate content of rice. Journal of Hygiene 184:184-92.
Bao J.S. (2002) Analysis of the relationship between Wx alleles and some starch quality parameters of rice (Oryza sativa L.). Cereal Res. Commun. 30:397-402.
Bao J.S., Cai Y., Corke H. (2001) Prediction of rice starch quality parameters by Near‐Infrared Reflectance Spectroscopy. J. Food Sci. 66:936-939.
Bao J.S., Corke H., He P., Zhu L.H. (2003) Analysis of quantitative trait loci for starch properties of rice based on an RIL population. Acta Bot. Sin. 45:986-994.
Bao J.S., He P., Li S.G., Xia Y.W., Chen Y., Zhu L.H. (2000a) Comparative mapping quantitative trait loci controlling the cooking and eating quality of rice (Oryza sativa L.). Scientia Agricultura Sinica 33:8-13.
Bao J.S., Sun M., Corke H. (2002a) Analysis of the genetic behavior of some starch properties in indica rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. Theor. Appl. Genet. 104:408-413.
Bao J.S., Wu Y., Hu B., Wu P., Cui H., Shu Q. (2002b) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica 128:317-324.
Bao J.S., Xia Y.W. (1999) Genetic control of paste viscosity characteristics in indica rice (Oryza sativa L.). Theor. Appl. Genet. 98:1120-1124.
Bao J.S., Zheng X.W., Xia Y.W., He P., Shu Q.Y., Lu X., Chen Y., Zhu L.H. (2000b) QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor. Appl. Genet. 100:280-284.
Bergman C., Bhattacharya K., Ohtsubo K. (2004) Rice end-use quality analysis, Rice: Chemistry and Technology, 3rd Ed. ET Champagne, ed. AACC International: St. Paul, MN.
Bhattacharaya K.R. (1979) Gelatinization temperature of rice starch and its determination, International Rice Research Institute, Los Banos, Laguna, Philippines. pp. 231-249.
Bhattacharya K. (2011) Rice quality: a guide to rice properties and analysis.
Bhattacharya K., Sowbhagya C. (1971) Water uptake by rice during cooking. Cereal Sci. Today 16:420-424.
Bhattacharya K., Sowbhagya C. (1980) Size and shape classification of rice. Riso 29:181-185.
Blakeney A.B., Welsh L.A., Bannon D.R. (1991) Rice quality analysis using a computer controlled RVA, in: M. D.J. and C. W. Wrigly (Eds.), Cereal International, RACI., Melbourne. pp. 180-182.
Bollich C., Webb B. (1973) Inheritance of amylose in two hybrid populations of rice. Cereal. Chem. 50:631-636.
Bringhurst T.A., Fotheringham A., Brosnan J. (2003) Grain whisky: raw materials and processing. Whisky: technology, production and marketing. Academic Press, London.
Cagampang G.B., Perez C.M., Juliano B.O. (1973) A gel consistency test for eating quality of rice. Journal of the Science of Food and Agriculture 24:1589-1594.
Champagne E.T., Bett-Garber K.L., Fitzgerald M.A., Grimm C.C., Lea J., Ohtsubo K., Jongdee S., Xie L., Bassinello P.Z., Resurreccion A. (1973) Important sensory properties differentiating premium rice varieties. Rice 3:270-281.
Chen M.H., Bergman C.J., Pinson S.R.M., Fjellstrom R.G. (2008) Waxy gene haplotypes: Associations with pasting properties in an international rice germplasm collection. J. Cereal Sci. 48:781-788.
Churchill G.A., Doerge R.W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.
Cooper N., Siebenmorgen T., Counce P. (2008) Effects of nighttime temperature during kernel development on rice physicochemical properties. Cereal. Chem. 85:276-282.
David C.C. (1991) The world rice economy: challenges ahead. Rice Biotech.:1-18.
Deffenbaugh L., Walker C. (1989) Comparison of starch pasting properties in the Brabender Viscoamylograph and the Rapid Visco-Analyzer. Cereal. Chem. 66:493-499.
Del Mundo A. (1979) Sensory assessment of cooked milled rice, Chemical Aspects of Rice Grain Quality, International Rice Reaserch Institute. pp. 313-326.
Delwiche S.R., Bean M.M., Miller R.E., Webb B.D., Williams P.C. (1995) Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal. Chem. 72:182-187.
Desikachar H., Subrahmanyan V. (1961) The formation of cracks in rice during wetting and its effect on the cooking characteristics of the cereal. Cereal. Chem. 38:356-357.
Dobo M., Ayres N., Walker G., Park W.D. (2010) Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm. J. Cereal Sci. 52:450-456.
Dung L.V., Mikami I., Amano E., Sano Y. (2000) Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breed. Sci. 50:215-219.
Fitzgerald M.A., Bergman C.J., Resurreccion A.P., Möller J., Jimenez R., Reinke R.F., Martin M., Blanco P., Molina F., Chen M.H. (2009a) Addressing the dilemmas of measuring amylose in rice. Cereal. Chem. 86:492-498.
Fitzgerald M.A., McCouch S.R., Hall R.D. (2009b) Not just a grain of rice: the quest for quality. Trends Plant Sci. 14:133-139.
Furukawa T., Maekawa M., Oki T., Suda I., Iida S., Shimada H., Takamure I., Kadowaki K. (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal 49:91-102.
Gao Z., Zeng D., Cheng F., Tian Z., Guo L., Su Y., Yan M., Jiang H., Dong G., Huang Y. (2011) ALK, The Key Gene for Gelatinization Temperature, is a Modifier Gene for Gel Consistency in Rice (Oryza sativa L.). J. Integr. Plant Biol.
Ge X., Xing Y.Z., Xu C., He Y. (2005) QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population. Plant breeding 124:121-126.
Ghosh A., Govindaswamy S. (1972) Inheritance of starch iodine blue value and alkali digestion value in rice and their genetic association. Riso 21:123-132.
Gravois K.A., Webb B.D. (1997) Inheritance of long grain rice amylograph viscosity characteristics. Euphytica 97:25-29.
Grist D.H. (1959) Rice. 3rd ed. Longmans, London.
Guo T., Liu X., Wan X., Weng J., Liu S., Chen M., Li J., Su N., Wu F. (2011) Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J. Integr. Plant Biol.
Han Y., Xu M., Liu X., Yan C., Korban S.S., Chen X., Gu M. (2004) Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science 166:357-364.
Hao W., Zhu M.Z., Gao J.P., Sun S.Y., Lin H.X. (2009) Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines. J. Integr. Plant Biol. 51:500-512.
He P., Li S., Qian Q., Ma Y., Li J., Wang W., Chen Y., Zhu L. (1999) Genetic analysis of rice grain quality. Theor. Appl. Genet. 98:502-508.
He Y., Han Y., Jiang L., Xu C., Lu J., Xu M. (2006) Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol. Breed. 18:277-290.
Hedden P. (2003) The genes of the Green Revolution. Trends Genet. 19:5-9.
Hirano H.Y., Sano Y. (2000) Comparison of Waxy gene regulation in the endosperm and pollen in Oryza sativa L. Genes Genet. Syst. 75:245-249.
Hue M., Choi J. (1973) The genetics of alkali digestibility in grains of indica japonica hybrids. Korean J. Breed. 5:32-36.
Huysmans A. (1965) Milling quality of paddy is influenced by timing of the harvest. IRC Newsletter 14:4-12.
Ikehashi H., Kush G. (1979) Methodology of assessing appearance of rice grain, including chalkness and whiteness. pp. 223-229.
IRRI. (1978) Annual Report for 1977, International Rice Reaearch Institute, Los Banos, Laguna, Philippines
Isshiki M., Nakajima M., Satoh H., Shimamoto K. (2000) dull: rice mutants with tissue‐specific effects on the splicing of the waxy pre‐mRNA. The Plant Journal 23:451-460.
Jansen R.C. (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205-211.
Jena K., Mackill D. (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 48:1266-1276.
Jiang H., Dian W., Wu P. (2003) Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 63:53-59.
Juliano B.O. (1979) The chemical basis of rice grain quality International Rice Research Institute.
Juliano B.O. (1985) Criteria and tests for rice grain qualities, in: B. O. Juliano (Ed.), Rice Chemistry and Technology, American Association of Cereal Chemists, Inc, MN. pp. 43-524.
Juliano B.O. (1993) Rice in human nutrition Unipub.
Juliano B.O. (1998) Varietal impact on rice quality. Cereal Foods World 43.
Juliano B.O., Cagampang G.B., Cruz L.J., Santiago R.G. (1964a) Some physical chemical properties of rice in southeast Asia. Cereal. Chem. 41:275-286.
Juliano B.O., Cagampang G.B., Cruz L.J., Santiago R.G. (1964b) Some physicochemical properties of rice in Southeast Asia. Cereal. Chem. 41:275-286.
Juliano B.O., Onate L.U., Del Mundo A.M. (1965) Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technology 19.
Juliano B.O., Onate L.U., Del Mundo A.M. (1972) Amylose and protein contents of milled rice as eating quality factors. The Philippine Agriculturist 56.
Juliano B.O., Perez C.M. (1984) Results of a collaborative test on the measurement of grain elongation of milled rice during cooking. J. Cereal Sci. 2:281-292.
Juliano B.O., Villareal C. (1993) Grain quality evaluation of world rices Agribookstore/Winrock.
Kao C.H., Zeng Z.B., Teasdale R.D. (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203-1216.
Khush G., Paule C., De La Cruz N. (1979) Rice grain quality evaluation and improvement at IRRI, in: N. Brady (Ed.), Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality, International Rice Research Institute, Los Banos, Laguna, Philippines. pp. 21-31.
Kim W., Eum C.H., Lim S., Han J., You S., Lee S. (2007) Separation of amylose and amylopectin in corn starch using dual-programmed flow field-flow fractionation. Bulltin of Korean Chemical Society 28:2489.
Kumar I., Khush G. (1988) Inheritance of amylose content in rice (Oryza sativa L.). Euphytica 38:261-269.
Kumar I., Khush G.S., Juliano B.O. (1987) Genetic analysis of waxy locus in rice (Oryza sativa L.). Theor. Appl. Genet. 73:481-488.
Lander E.S., Botstein D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
Lee S., An G. (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, cell & environment 32:408-416.
Lee T.T.T., Wang M.M.C., Hou R.C.W., Chen L.J., Su R.C., Wang C.S., Tzen J.T.C. (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci., Biotechnol., Biochem. 67:1699-1705.
Li Z., Wan J., Xia J., Yano M. (2003) Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Breed. Sci. 53:209-215.
Little R.R., Hilder G.B., Dawson E.H. (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal. Chem. 35:111-126.
Loudet O., Chaillou S., Camilleri C., Bouchez D., Daniel-Vedele F. (2002) Bay-0× Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor. Appl. Genet. 104:1173-1184.
McKenzie K., Rutger J. (1983) Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice. Crop Sci. 23:306-313.
Mohan M., Nair S., Bhagwat A., Krishna T., Yano M., Bhatia C., Sasaki T. (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed. 3:87-103.
Nanda B.B., Haran C.S., Vamadeuan V.K., Lodh S.B. (1976) Effect of periodical planting on protein, amylose and yield of rice. Oryza 134:37-42.
Normand F., Marshall W. (1989) Differential scanning calorimetry of whole grain milled rice and milled rice flour. Cereal. Chem. 66:317-320.
Onate L., Del Mundo A., Juliano B. (1964) Relationship between protein content and eating quality of milled rice. The Philippine Agriculturist 47:441-444.
Paine J.A., Shipton C.A., Chaggar S., Howells R.M., Kennedy M.J., Vernon G., Wright S.Y., Hinchliffe E., Adams J.L., Silverstone A.L. (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23:482-487.
Pooni H., Kumar I., Khush G. (1993) Genetical control of amylose content in selected crosses of indica rice. Heredity 70:269-280.
Preiss J. (1991) Biology and molecular biology of starch synthesis and its regulation. Oxford Surveys of Plant Molecular Cell Biology Vol 7 7:59-114.
Rani M.R.S., Bhattacharya K. (1995) Rheology of rice‐flour pastes: relationship fo paste breakdown to rice quality and a simplified brabender viscograph test. J. of texture studies 26:587-598.
Resurreccion A.P., Hara T., Juliano B.O., Yoshida S. (1977) Effect of temperature during ripening on grain quality of rice. Soil Sci. Plant Nutr. 23:109-112.
Sadanandeswara R., Bhattacharya K. (1977) Some physical properties of rice with special reference to 'waxy' and 'bulu' varieties. Riso 26:295-298.
Satoh H., Omura T. (1981) New endosperm mutations induced by chemical mutagens in rice, Oryza sativa L. Jpn. J. Breed 31:316-326.
Sax K. (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552.
Shi C., Zhu J., Zang R., Chen G. (1997) Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor. Appl. Genet. 95:294-300.
Slade L., Levine H. (1989) A food polymer science approach to selected aspects of starch gelatinization and retrogradation. Frontiers in Carbohydrate Research 1:215-270.
Storozhenko S., De Brouwer V., Volckaert M., Navarrete O., Blancquaert D., Zhang G.F., Lambert W., Van Der Straeten D. (2007) Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 25:1277-1279.
Su Y., Rao Y., Hu S., Yang Y., Gao Z., Zhang G., Liu J., Hu J., Yan M., Dong G. (2011) Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theor. Appl. Genet. 123:1-9.
Sweeney M., McCouch S. (2007) The complex history of the domestication of rice. Annals of Botany 100:951-957.
Takeda Y., Hizukuri S., Juliano B.O. (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 168:79-88.
Tan Y., Li J., Yu S., Xing Y., Xu C., Zhang Q. (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet. 99:642-648.
Tan Y.F., Xing Y.Z., Li J.X., Yu S.B., Xu C.G., Zhang Q. (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101:823-829.
Thoday J.M. (1961) Location of polygenes. Nature 191:368-370.
Tian Z., Qian Q., Liu Q., Yan M., Liu X., Yan C., Liu G., Gao Z., Tang S., Zeng D. (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 106:21760.
Tran N.A., Daygon V.D., Resurreccion A.P., Cuevas R.P., Corpuz H.M., Fitzgerald M.A. (2011) A single nucleotide polymorphism in the Waxy gene explains a significant component of gel consistency. Theor. Appl. Genet.:1-7.
Traore K., McClung A.M., Chen M.H., Fjellstrom R. (2010) Inheritance of flour paste viscosity is associated with a rice Waxy gene exon 10 SNP marker. J. Cereal Sci.
Umemoto T., Aoki N. (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct. Plant Biol. 32:763-768.
Umemoto T., Aoki N., Lin H., Nakamura Y., Inouchi N., Sato Y., Yano M., Hirabayashi H., Maruyama S. (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct. Plant Biol. 31:671-684.
Umemoto T., Nakamura Y., Ishikura N. (1995) Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry 40:1613-1616.
Umemoto T., Yano M., Satoh H., Shomura A., Nakamura Y. (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 104:1-8.
Unnevehr L., Duff B., Juliano B.O. (1992) Consumer demand for rice grain quality: terminal report of IDRC projects, national grain quality (Asia), and international grain quality economics (Asia) Agribookstore/Winrock.
Van Ooijen J.W. (2006) JoinMap 4-software for the calculation of genetic linkage maps in experimental populations, Plant Research International, Wageningen, The Netherlands.
Wakasa K., Hasegawa H., Nemoto H., Matsuda F., Miyazawa H., Tozawa Y., Morino K., Komatsu A., Yamada T., Terakawa T. (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J. Exp. Bot. 57:3069-3078.
Wan X., Wan J., Weng J., Jiang L., Bi J., Wang C., Zhai H. (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110:1334-1346.
Wang L., Liu W., Xu Y., He Y., Luo L., Xing Y., Xu C., Zhang Q. (2007) Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor. Appl. Genet. 115:463-476.
Wang S., Basten C.J., Zeng Z.B. (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. ( http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
Wang Z., Gu Y., Chen G., Xiong F., Li Y. (2003) Rice quality and its affecting factors. Mol. Plant Breed. 1:231-241.
Wang Z.Y., Zheng F.Q., Shen G.Z., Gao J.P., Snustad D.P., Li M.G., Zhang J.L., Hong M.M. (1995) The amylose content in rice endosperm is related to the post‐transcriptional regulation of the Waxy gene. The Plant Journal 7:613-622.
Webb B.D., Bollich C.N., Johnston T., McIlrath W. (1979) Components of rice quality: their identification, methodology, and stage of application in United States breeding programs. pp. 191-208.
Wu Y., Bhat P., Close T., Lonardi S. (2007) Efficient and accurate construction of genetic linkage maps from noisy and missing genotyping data. Algorithms in Bioinformatics 4645:395-406.
Wu Y.P., Ko P.Y., Lee W.C., Wei F.J., Kuo S.C., Ho S.W., Hour A.L., Hsing Y.I., Lin Y.R. (2010) Comparative analyses of linkage maps and segregation distortion of two F2 populations derived from japonica crossed with indica rice. Hereditas 147:225-236.
Xu S. (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201-2208.
Yamada T., Taki M. (1976) Fractionation of maize starch by Gel‐chromatography. Starch‐Stärke 28:374-377.
Yamanaka S., Nakamura I., Watanabe K.N., Sato Y.I. (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor. Appl. Genet. 108:1200-1204.
Yan C.J., Tian Z.X., Fang Y.W., Yang Y.C., Li J., Zeng S.Y., Gu S.L., Xu C.W., Tang S.Z., Gu M.H. (2011) Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theor. Appl. Genet. 122:63-76.
Yoshida S., Hara T. (1977) Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci. Plant Nutr. 23:93-107.
Zeng Z.B. (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90:10972.
Zeng Z.B. (1994) Precision mapping of quantitative trait loci. Genetics 136:1457-1468.
Zhang Z., Li M., Fang Y., Liu F., Lu Y., Meng Q., Peng J., Yi X., Gu M., Yan C. (2012) Diversification of the Waxy Gene is Closely Related to Variations in Rice Eating and Cooking Quality. Plant Mol. Biol. Rep. 30:462-469.
Zhou L., Chen L., Jiang L., Zhang W., Liu L., Liu X., Zhao Z., Liu S., Zhang L., Wang J. (2009) Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor. Appl. Genet. 118:581-590.
Zhou Z., Robards K., Helliwell S., Blanchard C. (2003) Effect of rice storage on pasting properties of rice flour. Food Res. Int. 36:625-634.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64792-
dc.description.abstract在稻米品質之育種上,若以白米理化特性作為評估指標可有效節省人力,並應用於早世代族群之選拔,可增進育種效率。然而米質性狀為數量性遺傳,且受到栽培環境的影響很大,故定位及選殖影響米質理化特性之遺傳因子有其必要性,利於後續之分子輔助育種、提升選拔精準度。是以,本研究利用稉稻臺農78號與秈稻臺中秈17號所建立之190個重組自交系為材料,在2010年二期作及2011年一期作兩個栽培期下進行試驗,進行白米味度計分析以及7個快速黏度分析特性,期望能找出在兩期作中穩定表現之QTLs,作為後續米質育種及遺傳研究之參考,並探討環境對米質之影響。
本試驗中之米質味度值、尖峰黏度、熱糊黏度、冷糊黏度、破裂黏度、回升黏度、尖峰時間、成糊溫度等八個理化特性皆呈現連續性分佈,且彼此之間多具有高度之正相關性。除味度與回升黏度於兩期作表現差異不大外,其餘六個特性易受環境影響,於兩期作顯著差異表現。以涵蓋12染色體之133個分子標幟,建立總長度為1501.6 cM、平均為11.4 cM的連鎖圖譜,其中59個標幟偏離預期之分離比、呈現分離偏差, 55個標幟偏向臺中秈17號之基因型,並造成第十二條染色體之標幟順序與物理圖譜不一致。以複合區間定位法進行QTL定位分析,在兩期作之試驗中共得到34個QTLs,分布於第2、3、4、5、6、7、9、10條染色體上,外表型變異解釋量從1.2~78 %不等,並在第3、6、7、10條染色體上觀察到除成糊溫度外之七個性狀QTLs群聚。其中有20個(10對)QTLs在兩期作中皆顯著,qHPV6、qBDV6、qCPV6、qSBV6、qPKV7、qCPV7、qSBV7與其他試驗結果相符,顯示這些QTLs在不同之試驗族群及環境下皆可穩定表現。其中位於第六對染色體Wx標幟附近之QTLs具有最大之效應,對味度值、熱糊黏度、破裂黏度、冷糊黏度、回升黏度、尖峰時間皆具有影響,外表型變異解釋量為29~78 %,此QTL可能為控制直鏈澱粉生合成之基因Waxy。對六個澱粉合成基因進行單點分析,除Wx外,SBE4對於熱糊黏度;PUL基因對於冷糊黏度及回升黏度在兩期作間具有顯著之影響。且在特定之Wx背景及交感組合下可偵測到更多顯著之遺傳因子,如在Wxb背景下之PUL:SBE4交感組合在味度、尖峰黏度、熱糊黏度、尖峰時間具有顯著之效應。
zh_TW
dc.description.abstractPhysiochemical properties of milled rice could be employed as a selection index of grain quality in early generations of rice breeding programs, which could reduce labor costs and improve breeding efficiency. However, grain qualities of rice are inherited quantitatively and influenced severely by environment. It is imperative to QTL map and clone genes conferring physiochemical properties in prior for marker assisted breeding to promote selection accuracy of grain quality. A total of 190 RILs derived by japonica cultivar TNG 78 crossed with indica cultivar TCS 17 were planted in two cropping seasons, the 2nd crop in 2010 and 1st crop in 2011. The palatability and 7 RVA characteristics were measured of rice grains of each RIL harvested from these two seasons. The objectives herein were to find QTLs expressed stably in two cropping seasons for further grain quality breeding and genetic research, and to study the environmental effects on rice grain quality.
Eight physiochemical properties, included palatability (PLS), peak viscosity (PV), hot paste viscosity (HPV), cool paste viscosity (CPV), brekdown viscosity (BDV), setback viscosity (SBV), peak time (PeT), and pasting temperature (PaT), exhibited continuous distribution, and displayed significant positive correlation between any two traits. Significant differences between two cropping seasons were observed in most traits except palatability and setback viscosity. By using 133 molecular markers covering 12 chromosomes, the linkage map of a total length of 1501.6 cM with an average of 11.4 cM were established. A toal of 59 markers showed segregation distortion which 55 markers skewed to homozygote of TCS 17 genotype, leading marker order of linkage map in chromosome 12 inconsistent to the order of the physical map. We employed composite interval mapping to uncover QTLs associated these eight traits measured in the two cropping seasons, 34 QTLs were obtained with phenotypic variance explanation (PVE) ranged from 1.2% to 78%. The QTLs were mapped on chromosomes 2, 3, 4, 5, 6, 7, 9, and 10; in addition, QTLs conferring 7 traits except pasting temperature were clustered on chromosomes 3, 6, 7, and 10. Twenty (10 pairs) QTLs were detected significantly in two environments, and qHPV6, qBDV6, qCPV6, qSBV6, qPKV7, qCPV7 and qSBV7 identified in this study were conservative with previous studies, suggesting these QTLs expressed stably not only in different environments but experimental populations. The QTLs nearby Wx, which regulates biosynthesis of amylopectin, displaying the largest effect on traits PLS, HPV, BDV, CPV, SBV and PeT, with phenotypic variance explanation ranged from 29% to 78% . The effect of six starch biosynthesis-related genes on these 8 traits was performed a single point analysis and revealed, besides Wx, that SBE4 displayed significant effect on hot paste viscosity, PUL displayed significant effect on cold paste viscosity and setback viscosity. We also proposed that more genes are found carrying significant effects at specific Wx gene haplotypes or interaction combination. Such as PUL:SBE4 interaction exhibits significant effects at PLS, PKV HPV and PeT.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:25Z (GMT). No. of bitstreams: 1
ntu-101-R98621119-1.pdf: 4893333 bytes, checksum: 7b24c7289a6368db5a3af079bebde013 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
內容目錄 VI
表目錄 VIII
Table contents IX
圖目錄 X
Figure contents XI
壹、前言 1
貳、前人研究 3
一、稻米品質 3
二、數量性狀定位方法之研究進展 11
三、稻米品質理化特性指標之遺傳研究 12
四、水稻快速黏度分析特性(RVA)之遺傳研究 14
參、材料與方法 17
一、試驗材料 17
二、分子標幟分析 18
三、米質理化特性分析 20
四、米質性狀外表型統計分析 22
五、連鎖圖譜建立與數量性狀基因座分析 22
肆、結果 24
一、試驗族群分析 24
二、臺農78號與臺中秈17號之重組自交系的連鎖圖譜建構 35
三、數量性狀基因座定位 42
伍、討論 55
試驗材料與對米質性狀分析及數量性狀基因座定位之影響 55
外表型評估與基因型測量 57
環境因子對本試驗之影響 59
QTLs之群聚現象 61
具有保守性之QTLs 62
選殖味度與RVA特性QTL應用於米質改良 63
結論與展望 64
陸、參考文獻 65
附錄一、臺農72號與臺中秈17號之米質理化特性比較 74
附錄二、建構連鎖圖譜所使用之標幟序列 75
附錄三、本試驗所調查之澱粉生合成基因標幟 79
附錄四、澱粉生合成基因之單點分析結果 80
附錄五、分子標幟各基因型之個數與偏差分離情形 115
附錄六、連鎖分析軟體MSTmap詳細操作流程 119
附錄七、快速黏度分析圖譜 122
dc.language.isozh-TW
dc.subject味度分析zh_TW
dc.subject快速黏度分析zh_TW
dc.subject數量性狀基因座zh_TW
dc.subject重組自交系zh_TW
dc.subject稻米品質zh_TW
dc.subjectRice grain qualityen
dc.subjectRapid visco analysisen
dc.subjectQuantitative trait locien
dc.subjectPalatability analysisen
dc.subjectRecombinant inbred linesen
dc.title影響稻米味度及黏度特性之數量性狀基因座定位分析zh_TW
dc.titleMapping Quantitative Trait Loci Conferring Palatability and Viscosity of Riceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳永培,胡凱康,張孟基
dc.subject.keyword味度分析,快速黏度分析,數量性狀基因座,重組自交系,稻米品質,zh_TW
dc.subject.keywordPalatability analysis,Rapid visco analysis,Quantitative trait loci,Recombinant inbred lines,Rice grain quality,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved