Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64782Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 趙里,洪淑蕙 | |
| dc.contributor.author | Hsin-Ying Yang | en |
| dc.contributor.author | 楊欣穎 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:59:10Z | - |
| dc.date.available | 2012-11-06 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | Aki, K. & Richards, P.G., 2002. Quantitative Seismology, 2nd ed., University Science Books, Sausalito, CA.
Al-Attar, D. & Woodhouse, J.H., 2008. Calculation of seismic displacement fields in self-gravitating earth models-applications of minors vectors and symplectic structure, Geophys. J. Int., 175, 1176-1208. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F., O’Hallaron, D.R., Shewchuk, J.R. & Xu, J., 1998. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Methods Appl. Mech. Eng., 152, 85–102. Bautista, B.C., Bautista, M.L.P., Oike, K., Wu, F.T. & Punongbayan, R.S., 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines, Tectonophysics, 339, 279-310. Bielak, J., Loukakis, K., Hisada, Y. & Yoshimura, C., 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions. Part I: Theory. Bull. Seism. Soc. Am. 93, 817-824. Bloch, S. & Hales, A.L., 1968. New techniques for the determination of surface wave phase velocities, Bull. Seism. Soc. Am., 58, 1021-1034. Boore, D.M., 1972. Finite-difference methods for seismic wave propagation in hetergeneous materials, in: Methods in Computational Physics, pp.1-37, ed. Bolt, B.A., Academic Press, New York, NY. Boschi, L. & Woodhouse, J. H., 2006. Surface-wave ray tracing and azimuthal anisotropy: a generalized spherical harmonic approach, Geophys. J. Int., 164, 569-578. Bouchon, M., 1979. Discrete wavenumber representation of elastic wavefields in three-space dimensions, J. Geophys. Res., 84, 3609-3641. Bozdağ, E. & Trampert, J., 2008. On crustal corrections in surface wave tomography, Geophys. J. Int., 172, 1066-1082. Brocher, T.M., 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bull. Seism. Soc. Am., 95, 2081-2092. Brudzinski, M. R., and W.-P. Chen, 2003. A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga: Corresponding evidence from broadband P and S waveforms, J. Geophys. Res., 108, 2299, doi:10.1029/2002JB002012. Brune, J.N., Nafe, J.E. & Oliver, J.E., 1960. A Simplified Method for the Analysis and Synthesis of Dispersed Wave Trains, J. Geophys. Res., 65, 287-303. Capon, J., 1970. Analysis of Rayleigh-wave multipath propagation at LASA, Bull. Seism. Soc. Am., 60, 1701-1731. Chai, B.H.T., 1972. Structure and tectonic evolution of Taiwan, Am. J. Sci., 272, 389-422. Chaljub, E., Capdeville, Y. & Vilotte, J. P., 2003. Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids, J. Comput. Phys., 187, 457–491, 2003. Chapman, C.H., 1978. A new method for computing synthetic seismograms, Geophy. J. R. Astr. Soc., 54, 481-518. Chemenda, A.I., Yang, R.K., Hsieh, C.H. & Groholsky, A.L., 1997. Evolutionary model for the Taiwan collision based on physical modelling, Tectonophysics, 274, 253-274. Chen, P.-F., Bina, C.R., Kuo-Chen, H., Wu, F.T., Wang, C.-Y., Huang, B.-S., Chen, C.-H. & Liang, W.-T., 2012. Slab-induced waveform effects as revealed by the TAIGER seismic array: Evidence of slab beneath central Taiwan, Phys. Earth Plant. Inter. , 196, 62-74. Chen, Y.-N., Gung, Y., You, S.-H., Hung, S.-H., Chiao, L.-Y., Huang, T.-Y., Chen, Y.-L., Liang, W.-T. & Jan, S., 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM, Geophys. Res. Lett., 38, L04305, doi:10.1029/2010GL046290. Chen, P.-F., Huang, B.-S. & Chiao, L.-Y., 2011. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times, Tectonophysics, 498, 27-34. Chen, P.-F., Huang, B.-S. & Liang, W.-T., 2004. Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times, Earth Planet. Sci. Lett., 229, 61-71. Chen, X. F. & Zhang, H. M., 2001. An efficient method for computing Green’s functions for a layered half-space at large epicentral distances, Bull. Seism. Soc. Am., 91, 858-869. Cheng, W.-B., 2004. Crustal Structure of the High Magnetic Anomaly Belt, Western Taiwan, and its Implications for Continental Margin Deformation, Mar. Geophys. Res., 25, 79-93. Cheng, W.-B., 2009. Tomographic imaging of the convergent zone in Eastern Taiwan – A subducting forearc sliver revealed?, Tectonophysics, 466, 170-183. Chiao, L.-Y., Fang, H.-Y., Gung, Y.-C., Chang, Y.-H. & Hung, S.-H., 2010. Comparative appraisal of linear inverse models constructed via distinctive parameterizations (comparing distinctly inverted models), J. Geophys. Res., 115, B07305, doi:10.1029/2009JB006867. Chiao, L.-Y. & Kuo, B.-Y., 2001. Multiscale seismic tomography, Geophys. J. Int., 145, 517-527. Chiao, L.-Y. & Liang, W.-T., 2003. Multiresolution parameterization for geophysical inverse problems, Geophysics, 68, 199-209. Christensen, N.I. & Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100, 9761-9788. Chung, S.-L., Sun, S.-s., Tu, K., Chen, C.-H. & Lee, C.-y., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension, Chem. Geol., 112, 1-20. Cohen, A., Daubechies, I. & Feauveau, J.C., 1992. Biorthogonal bases of compactly supported wavelets, Commun. Pur. Appl. Math., 45, 485-560. Cowling, T.G., 1941. The non-radial oscillations of polytropic stars, Mon. Not. R. astr. Soc., 101, 369–373. Crotwell, H.P., Owens, T.J. & Ritsema, J., 1999. The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seism. Res. Lett., 70, 154-160. Cummins, P. R., Geller, R. J., Hatori, T. & Takeuchi, N., 1994a. DSM complete synthetic seismograms: SH, spherically symmetric, case, Geophys. Res. Lett., 21, 533-536. Cummins, P. R., Geller, R. J., Hatori, T. & Takeuchi, N., 1994b. DSM complete synthetic seismograms: P-SV, spherically symmetric, case, Geophys. Res. Lett., 21, 1663-1636. Dahlen, F.A., Hung, S.H. & Nolet, G., 2000. Frechet kernels for finite-frequency traveltimes—I. Theory, Geophys. J. Int., 141, 157-174. Dahlen, F.A. & Tromp, J., 1998. Theoretical Global Seismology, pp. 944 Pages, Princeton University Press, Princton, N.J. Davis, D., Suppe, J. & Dahlen, F.A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges, J. Geophys. Res., 88, 1153-1172. de Vos, D., Paulssen, H. & Fichtner, A., 2011. Sensitivity kernels for interstation cross-correlations. in 2011 Fall Meeting, AGU, San Francisco, Calif. Dunkin, J.W., 1965. Computation of modal solutions in layered, elastic media at high frequencies, Bull. Seism. Soc. Am., 55, 335-358. Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth Plant. Inter., 25, 297-356. Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852. Edmonds, A.R., 1996. Angular momentum in quantum mechanics, Princeton University Press, Princeton, NJ. Engdhal, E.R., Van der Hilst, R. & Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722-743. Ferreira, A.M.G., Woodhouse, J.H., Visser, K. & Trampert, J., 2010. On the robustness of global radially anisotropic surface wave tomography, J. Geophys. Res., 115, B04313, doi:10.1029/2009JB006716. Forsyth, D.W. & Li, A., 2005. Array Analysis of Two-Dimensional Variations in Surface Wave Phase Velocity and Azimuthal Anisotropy in the Presence of Multipathing Interference, in Seismic Earth: Array Analysis of Broadband Seismograms, Geophysical Monograph 157, pp. 81-98, ed. A. Levander and G. Nolet., AGU, Washington DC. Friederich, W. & Dalkolmo, J., 1995. Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green’s function in the frequency domain, Geophys. J. R. astr. Soc., 122, 537–550. Friederich, W., Hunzinger, S. & Wielandt, E., 2000. A note on the interpretation of seismic surface waves overthree-dimensional structures, Geophys. J. Int., 143, 335-339. Fuchs, K. & Muller, G., 1971. Computation of synthetic seismograms with reflectivity method and comparison with observations, Geophy. J. R. Astr. Soc., 23, 417-433. Furlong, K.P. & Fountain, D.M., 1986. Continental Crustal Underplating: Thermal Considerations And Seismic-Petrologic Consequences, J. Geophys. Res., 91, 8285-8294. Furumura, T., Kennett, B. L. N. & M. Furumura, M., 1998. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method, Geophys. J. Int., 135, 845–860. Gaherty, J.B. & Jordan, T.H., 1995. Lehmann Discontinuity as the base of an anisotropic layer benearth continents, Science, 268, 1468-1471. Geller, R. J. & Takeuchi, N., 1995. A new method for computing highly accurate DSM synthetic seismograms, Geophys. J. Int., 123, 449–470. Gilbert, F., 1971. Excitation of normal modes of earth by earthquake sources, Geophy. J. R. Astr. Soc., 22, 223-226. Gilbert, F. & Backus, G.E., 1966. Propagator matrices in the elastic wave and vibration problems, Geophysics, 31, 326-332. Gilbert, F. & Helmberger, D. V., 1972. Generalized ray theory for a layered sphere, Geophy. J. R. Astr. Soc., 27, 57-80. Grand, S. P. 1994 Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res. 99, 11591-11621. Heinbockel, J.H., 2001. Introduction to tensor calculus and continuum mechanics, Trafford, Victoria, British Columbia, Canada. Helmberger, D. V., 1968. The crust-mantle transition in the Bering Sea, Bull. Seism. Soc. Am., 58, 179-214. Ho, C.-S., 1988. An Introduction to the geology of Taiwan. Explanatory text of the geologic map of Taiwan. , edn, Vol., pp. Pages, Central Geological Survey, Ministry of Economic Affairs, Taiwan, Republic of China, Taipei. Holschneider, M., Diallo, M.S., Kulesh, M., Ohrnberger, M., Luck, E. & Scherbaum, F., 2005. Characterization of dispersive surface waves using continuous wavelet transforms, Geophys. J. Int., 163, 463-478. Huang, T.-Y., Gung, Y., Liang, W.-T., Chiao, L.-Y. & Teng, L.S., 2012. Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies, Geophys. Res. Lett., 39, L05305, doi:10.1029/2011GL050727. Huang, B.-S., Huang, W.-G., Liang, W.-T., Rau, R.-J. & Hirata, N., 2006. Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations, Geophys. Res. Lett., 33, L24302. Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P.B., Lin, C.-W. & Xia, K.-Y., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan, Tectonophysics, 281, 31-51. Hung, S.-H., Chen, W.-P. & Chiao, L.-Y., 2011. A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet, J. Geophys. Res., 116, B06307, doi:10.1029/2010JB008190. Hung, S.H., Dahlen, F.A. & Nolet, G., 2000. Frechet kernels for finite-frequency traveltimes—II. Examples, Geophys. J. Int., 141, 175-203. Hung, S.H. & Forsyth, D.W., 1998. Modelling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multidomain pseudo-spectral method, Geophys. J. Int., 133, 726-740. Hwang, R.-D. & Yu, G.-K., 2005. Shear-wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves, Geophys. Res. Lett., 32, L07310, doi:10.1029/2004GL021868. Hyndman, R.D., 1979. Poisson's ratio in the oceanic crust‚ Review, Tectonophysics, 59, 321-333. Kawai, K., Takeuchi, N. & Geller, R. J., 2006. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media, Geophys. J. Int., 164, 411-424. Kennett, B. L. N., 1988. Systematic approximations to the seismic wavefield, in D. J. Doornbos (ed.) Seismological Algorithms, pp.237-259, Academic Press, San Diego, CA. Kennett, B.L.N., Engdahl, E.R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from travel-times, Geophys. J. Int., 122, 108-124. Khan, A., Boschi, L. & Connolly, J., 2009. On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface-wave data, J. Geophys. Res., 114, B9305, doi: 10.1029/2009JB006399. Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H. & Shen, P., 2005. Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204-220. Kind, R., 1978. Reflectivity method for a buried source, J. Geophys., 44, 603-612. Knopoff, L., 1964. A matrix method for elastic wave problems, Bull. Seism. Soc. Am., 54, 431-438. Komatitsch, D. & Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806-822. Komatitsch, D. & Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation, Geophys. J. Int., 150, 303–318. Kosloff, D., Reshef, M. & Loewenthal, D., 1984. Elastic wave calculation by the Fourier method, Bull. Seism. Soc. Am., 74, 875–891. Kulesh, M., Holschneider, M. & Diallo, M.S., 2008. Geophysical wavelet library: applications of the continuous wavelet transform to the polarization and dispersion analysis of signals, Comput. Geosci., 34, 1732-1742. Kulesh, M., Holschneider, M., Diallo, M.S., Xie, Q. & Scherbaum, F., 2005. Modeling of Wave Dispersion Using Continuous Wavelet Transforms, Pure Appl. Geophys., 162, 843-855. Kuo, B.-Y., Chi, W.-C., Lin, C.-R., Chang, E.T.-Y., Collins, J. & Liu, C.-S., 2009. Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS: implications for regional tectonics, Geophys. J. Int., 179, 1859-1869. Kuo-Chen, H., 2011. Imaging deep structures under the Taiwan orogen: Toward tectonic model testing, phD Thesis, State Uni. of New York, Binghamton. Kuo-Chen, H., Wu, F.T. & Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets, J. Geophys. Res., 117, B06306, doi:10.1029/2011JB009108. Landisman, M., Dziewonski, A. & Sato, Y., 1969. Recent Improvements in the Analysis of Surface Wave Observations, Geophys. J. Roy. Astr. S., 17, 369-403. Lapidus, L., Aiken R. C. & Liu Y. A., 1973. The occurrence and numerical solution of physical and chemical systems having widely varying time constants, in: R. A. Willoughby (Ed.), Stiff Differential Systems, pp. 187-200, Plenum Press, New York, NY. Laske, G., Markee, A., Orcutt, J.A., Wolfe, C.J., Collins, J.A., Solomon, S.C., Detrick, R.S., Bercovici, D. & Hauri, E.H., 2011. Asymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network, Geophys. J. Int., 187, 1725-1742. Lebedev, S. & Nolet, G., 2003. Upper mantle beneath Southeast Asia from S velocity tomography, J. Geophys. Res., 108, 2048. Lee, C.-Y., Chung, S.-L., Chen, C.-H. & Hsieh, Y.-L., 1993. Mafic granulite xenoliths from Penghu Islands: evidence for basic lower crust in SE China continental margin, J. Geol. Soc. China, 36, 351-379. Levander, A., 1988. Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425–1436. Li, C., van der Hilst, R.D. & Toksoz, M.N., 2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia, Phys. Earth Plant. Inter., 154, 180-195. Liang, W.-T., Chiu, J.-M. & Kim, K., 2007. Liang, Wen-Tzong and Chiu, Jer-Ming and Kim, Kwanghee, Bull. Seism. Soc. Am., 97, 1370-1377. Lin, C.-H., 2002. Active continental subduction and crustal exhumation: the Taiwan orogeny, Terra Nova, 14, 281-287. Lin, C.-H., 2005. Identification of mantle reflections from a dense linear seismic array: Tectonic implications to the Taiwan orogeny, Geophys. Res. Lett., 32, L06315. Lin, F.C., Ritzwoller, M.H., Yang, Y., Moschetti M.P. & Fouch M.J., 2011. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States, Nature Geoscience, 4, 55-61, doi:10.1038/ngeo1036. Lin, A.T., Watts, A.B. & Hesselbo, S.P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Res., 15, 453-478. Lysmer, J. & Drake, L.A., 1971. The propagation of Love waves across nonhorizontally layered structures, Bull. Seism. Soc. Am., 61, 1233-1251. Ma, K.-F., Wang, C.-H. & Zhao, D., 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105. Mallat, S.G., 2009. A wavelet tour of signal processing : the sparse way, 3nd edn, pp. 805 Pages, Elsevier/Academic Press, Boston. Marquering, H., Nolet, G. & Dahlen, F.A., 1998. Three-dimensional waveform sensitivity kernels, Geophys. J. Int., 132, 521-534. Maupin, V., 2011. Upper-mantle structure in southern Norway from beamforming of Rayleigh wave data presenting multipathing, Geophys. J. Int., 185, 985-1002. McIntosh, K., Nakamura, Y., Wang, T.K., Shih, R.C., Chen, A. & Liu, C.S., 2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea, Tectonophysics, 401, 23-54. Meier, T., Dietrich, K., Stˆckhert, B. & H.-P. Harjes, 2004. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int., 156, 45-58. Menke, W. & Abbott, D., 1990. Geophysical Theory, Columbia University Press, New York, NY. Mjelde, R., Kasahara, J., Shimamura, H., Kamimura, A., Kanazawa, T., Kodaira, S., Raum, T. & Shiobara, H., 2002. Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinized peridotite? Evidence from the Voring Margin, NE Atlantic, Mar. Geophys. Res., 23, 169-183. Montagner, J.P. & Kennett, B.L.N., 1996. How to reconcile body-wave and normal-mode reference earth models, Geophys. J. Int., 125, 229-248. Montelli, R., Nolet, G., Dahlen, F.A., Masters G., Engdahl, E.R. & Hung, S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338-343. Morse, P.M. & Feshbach, H., 1953. Methods of Theoretical Physics, McGraw-Hill, New York, NY. Muyzert, E. & Snieder, R., 1996. The influence of errors in source parameters on phase velocity measurements of surface waves, Bull. Seism. Soc. Am., 86, 1863-1872. Muller, G., 1985. The reflectivity method: a tutorial, J. Geophys., 58, 153-174. Nishimura, C.E. & Forsyth, D.W., 1989. The anisotropic structure of the upper mantle in the Pacific, Geophys. J., 96, 203-229. Nissen, S.S., Hayes, D.E., Buhl, P., Diebold, J., Bochu, Y., Weijun, Z. & Yongqin, C., 1995. Deep penetration seismic soundings across the northern margin of the South China Sea, J. Geophys. Res., 100, 22407-22433. Pedersen, H.A., 2006. Impacts of non-plane waves on two-station measurements of phase velocities, Geophys. J. Int., 165, 279-287. Pekeris, C.L. & Jarosch, H., 1958. The free oscillations of the Earth, in: H. Benioff, M. Ewing, B.F. Howell, Jr., F. Press (Eds.) Contributions in Geophysics in Honor of Beno Butenberg, pp.171-192, Pergamon, New York, NY. Phinney, R.A. & Burridge, R., 1973. Representation of elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophy. J. R. Astr. Soc., 34, 451-487. Pollitz, F.F. & Snoke, J.A., 2010. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography, Geophys. J. Int., 180, 1153-1169. Prindle, K. & Tanimoto, T., 2006. Teleseismic surface wave study for S-wave velocity structure under an array: Southern California, Geophys. J. Int., 166, 601-621. Rau, R.-J. & Wu, F.T., 1995. Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532. Richards, P. G., 1973. Calculation of body waves, for caustics and tunnelling in core phases, Geophy. J. R. Astr. Soc., 35, 243-264. Rodi, W.L., Glover, P., Li, T.M.C. & Alexander, S.S., 1975. A fast, accurate method for computing group-velocity partial derivatives for Rayleigh and Love modes, Bull. Seismo. Soc. Am, 65, 1105-1114. Salah, M.K. & Seno, T., 2008. Imaging of Vp, Vs, and Poisson ratio anomalies beneath Kyushu, southwest Japan: Implications for volcanism and forearc mantle wedge serpentinization, J. of Asian Earth Sci., 31, 404-428. Shao, W.-Y., Chung, S.-L. & Chen, W.-S., 2012. Old continental crust beneath young oceanic arc, eastern Taiwan: New data and interpretation related to Taiwan orogeny. in Taiwan Geosciences Assembly, pp. 234, Taiwan. Shi, X., Burov, E., Leroy, S., Qiu, X. & Xia, B., 2005. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea, Tectonophysics, 407, 117-134. Shyu, J.B.H., Wu, Y.-M., Chang, C.-H. & Huang, H.-H., 2010. Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan, J. Asian Earth Sci., 42, 415-422. Sun, D., E. Tan, D. V. Helmberger, and M. Gurnis, 2007. Seismological support for the metastable superplume model, sharp features, and phase changes, within the lower mantle, Proc. Natl. Acad. Sci. U. S. A., 104(22), 9151–9155. Suppe, J., Liou, J.G. & Ernst, W.G., 1981. Paleogeographic origins of the Miocene East Taiwan Ophiolite, Am. J. Sci., 281, 228-246. Tang, C.-C., Chen, C.-H., Teng, T.-L.T., Zhu, L. & Wen, S.. Variation of Moho depth in Taiwan from teleseismic receiver functions and its tectonic implications (unpublished). Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76. Teng, L.S. & Lin, A.T., 2004. Cenozoic tectonics of the China Continental margin: insights from Taiwan. in Aspects of the Tectonic Evolution of China, pp. 313-332, eds. Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C. Geological Society, London. Thybo, H., Maguire, P.K.H., Birt, C., Perchu & E., 2000. Seismic reflectivity and magmatic underplating beneath the Kenya Rift, Geophys. Res. Lett., 27, 2745-2748. Thybo, H. & Nielsen, C.A., 2009. Magma-compensated crustal thinning in continental rift zones, Nature, 457, 873-876. Ustaszewski, K., Wu, Y.-M., Suppe, J., Huang, H.-H., Chang, C.-H. & Carena, S., 2012. Crust-mantle boundaries in the Taiwan‚ Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal, Tectonophysics, in press. Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 49, 1933–1957. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 51, 889–901. Wang, H.-L., Chen, H.-W. & Zhu, L., 2010. Constraints on average Taiwan Reference Moho Discontinuity Model—receiver function analysis using BATS data, Geophys. J. Int., 183, 1-19. Wang, Z., Fukao, Y., Zhao, D., Kodaira, S., Mishra, O.P. & Yamada, A., 2009. Structural heterogeneities in the crust and upper mantle beneath Taiwan, Tectonophysics, 476, 460-477. Wang, C. Y. & Herrmann, R. B., 1980. A numerical study of P-, SV-, and SH-wave generation in a plane layered medium, Bull. Seism. Soc. Am., 70, 1015-1036. Watts, A.B., 2001. Isostasy and Flexure of the Lithosphere, pp. 458 Pages, Cambridge University Press, New York. Wielandt, E., 1993. Propagation and Structural Interpretation of Non-Plane Waves, Geophys. J. Int., 113, 45-53. Woodhouse, J.H., 1980. Efficient and stable methods for performing seismic calculations in stratified media, in: A.M. Dziewonski, E. Boschi (Eds.) Proc. Int. School of Physics 'Enrico Fermi', Course LXXVIII. Physics of the Earth's Interior, pp.127-151, North-Holland, Amsterdam. Woodhouse, J.H., 1988. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in: D. J. Doornbos (Ed.) Seismological Algorithms, pp.321-370, Academic Press, San Diego, CA. Woodhouse, J.H. & Dahlen, F.A., 1978. Effect of a general aspherical perturbation on free oscillations of Earth, Geophy. J. R. Astr. Soc., 53, 335-354. Woodhouse, J. H. & Girnius, T. P., 1982. Surface waves and free oscillations in a regionalized earth model, Geophy. J. R. Astr. Soc., 68, 653-673. Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J.B.H., Chen, Y.-G., Sieh, K. & Avouac, J.-P., 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, doi:10.1029/2007JB004983. Wu, F.T., Rau, R.-J. & Salzberg, D., 1997. Taiwan orogeny: thin-skinned or lithospheric collision?, Tectonophysics, 274, 191-220. Yang, Y. & Forsyth, D.W., 2006. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels, Geophys. J. Int., 166, 1148-1160. Yang, Y.-S. & Wang, T.-K., 1998. Crustal variation of the western Philippine Sea Plate from TAICRUST OBS/MCS Line 23, Terr. Atmos. Oceanic. Sci., 9, 379-393. Yang, H.-Y., Zhao, L. & Hung, S.-H., 2007. Short-period normal-mode synthetics and Frechet kernels for spherically symmetric Earth models, in EOS Trans. Am. Geophys. Un., 89(53), Fall Meet. Suppl., Abstract S23B-1374. Yang, H.-Y., Zhao, L. & Hung, S.-H., 2010. Synthetic seismograms by normal-mode summation: A new derivation and numerical examples, Geophys. J. Int., 183, 1613-1632. Yao, H., Xu, G., Zhu, L. & Xiao, X., 2005. Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions, Phys. Earth Plant. Inter., 148, 39-54. Yeh, Y.-C., Hsu, S.-K., Doo, W.-B., Sibuet, J.-C., Liu, C.-S. & Lee, C.-S., 2012. Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations, Mar. Geophys. Res., 1-20, doi: 10.1007/s11001-012-9154-4 Yeh, Y.-H., Shih, R.C., Lin, C.H., Liu, C.C., Yen, H.Y., Huang, B.-S., Liu, C.-S., Chen, P.Z., Huang, C.S., Wu, C.J. & Wu, F.T., 1998. Onshore/Offshore Wide-Angle Deep Seismic Profiling in Taiwan, Terr. Atmos. Oceanic. Sci., 9, 301-316. Yoshizawa, K., Miyake, K. & Yomogida, K., 2010. 3D upper mantle structure beneath Japan and its surrounding region from inter-station dispersion measurements of surface waves, Phys. Earth Plant. Inter., 183, 4-19. Zhang, H. M., Chen, X. F. & Chang, S. H., 2003. An efficient Numerical Method for computing synthetic seismograms for a layered half-space with source and receivers at closed or same depths, Pure and Applied Geophysics, 160, 467-486. Zhao, L. & Jordan, T.H., 1998. Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure, Geophys. J. Int., 133, 683-704. Zhao, L., Jordan, T.H. & Chapman, C.H., 2000. Three-dimensional Frechet differential kernels for seismic delay times, Geophys. J. Int., 141, 558-576. Zhao, M., Qiu, X., Xia, S., Xu, H., Wang, P., Wang, T.K., Lee, C.-S. & Xia, K., 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data, Tectonophysics, 480, 183-197. Zhou, Y., Dahlen, F.A. & Nolet, G., 2004. Three-dimensional sensitivity kernels for surface wave observables, Geophys. J. Int., 158, 142-168. Zhou, Y., Dahlen, F.A., Nolet, G. & Laske, G., 2005. Finite-frequency effects in global surface-wave tomography, Geophys. J. Int., 163, 1087-1111. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64782 | - |
| dc.description.abstract | 本徵振盪理論 (normal mode theory) 是地震學上發展十分完整的理論之一。由於它同時兼具計算上的效率與理論本身的準確性,是使我們了解地震波在球對稱(側向均勻)地球模型中傳播特性的重要工具。藉由地震所激發的能量,此理論已被廣泛用於探討地球本身的共振頻率,也提供我們對其內部的震波結構(如P波、S波速度及密度)有更進一步的研究。本論文同時著重本徵振盪理論及其應用兩方面。首先,我們利用廣義球諧函數 (generalized spherical harmonics) 及座標轉換,重新推導在球對稱模型中空間上任一點的理論地震位移,因為其質點運動可表示成地球本徵振盪的線性疊加 (normal mode summation)。相較於利用一般球諧函數 (ordinary spherical harmonics) 展開的表示式,新的表達式更為精簡。透過理論地震圖在不同模型下的比較,我們能夠直觀的探討地球本身重力 (self-gravitation)、衰減 (attenuation)、徑向非均向性 (radial anisotropy) 對於震波形的影響。應用方面,我們發展了以小波 (wavelet) 為基礎的測量表面波相速度 (phase velocity) 的方法。由於本徵振盪理論不僅提供理論合成波形,也能夠計算其所對應的相速度值,透過它能驗證我們發展的量測方法是否準確。再者,將此方法應用在台灣南部的臨時寬頻測站,進而得到此區域地殼及上部地函的剪力波速度構造,藉此了解現今活躍的造山運動所影響地殼變形的程度。這是第一個由遠震表面波所逆推的台灣區域非一維構造。與近震體波走時 (local body-wave traveltime) 求得的模型相較,兩者的速度構造相近。但在西部下部地殼以下,我們的模型有相對較好的解析能力。我們推測北港高區附近變形前緣下方深度20-40公里的高速異常,應是岩漿底侵 (magmatic underplating) 而形成的部份下部地殼。形成機制可能與南海張裂造成被動大陸邊緣的拉張活動有關。相較於中央山脈下方已增厚的地殼,此近乎完整的高速區,暗示弧陸碰撞 (arc-continent collision) 所造成的下地殼變形還侷限在側向距離縫合帶~50公里以內的區域。我們的速度模型,為解釋因板塊碰撞撞而引起的造山運動及其它更早期的構造演化,提供了新的可靠的地震學依據。 | zh_TW |
| dc.description.abstract | Normal mode theory, which compromises accuracy and efficiency in computation, allows us to investigate wave propagations in a spherically symmetric earth model. This theory has been widely used in exploring the resonant frequencies of the Earth excited by large earthquakes, and is able to provide insights into seismic structures of the Earth. In this thesis, we focus on synthetic waveforms expressed by normal-mode summation as well as application to surface-wave tomography.
A new derivation of displacement in response to seismic sources in terms of the modal summation of the Earth is presented. Starting from the well-known formal expression of normal-mode summation, we obtain the explicit expressions of displacements by means of generalized spherical harmonics and coordinate transformation. Moreover, numerical experiments of normal-mode synthetics are conducted to investigate the influences of self-gravitation, attenuation, radial anisotropy, density and P-wave speed on seismic waveforms. We develop a wavelet-based measurement of surface-wave phase velocities and then apply this method to a linear temporary array with ~140 km span in southern Taiwan to obtain shear-wave speed structures in the crust and uppermost mantle. Synthetic tests using waveforms in both spherically symmetric and 3D heterogeneous models verify the reliability of our measurement approach. Our seismic images reveal similar features in the crust to those constrained by local body-wave travel-time tomography, while yielding more robust features down to the depth of 70 km. Our model particularly improves the resolution beneath western Taiwan, where the lower crust is characterized by high seismic speed. This feature is probably pertain to magmatic underplating as a consequence of the opening of the South China Sea and has remained unscathed during arc-continent collision. Our tomography model provides new reliable seismological evidence for the tectonic evolution of Taiwan as a result of the convergence between Eurasian and Philippine Sea Plates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:59:10Z (GMT). No. of bitstreams: 1 ntu-101-D94224004-1.pdf: 15111634 bytes, checksum: 08f0189f8e72746df050ca5bf93c9ed0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iiii Abstract v Table of Contents vi List of Figures viii Chapter 1 Introduction 1 Chapter 2 Synthetic Seismograms by Normal-mode Summation: A New Derivation and Numerical Examples 4 2.1 Introduction 4 2.2 Normal mode summation 8 2.2.1 Normal modes 8 2.2.2 Displacement by normal-mode summation 13 2.3 Explicit normal-mode summation expression 15 2.3.1 Basis vector and basis function 16 2.3.2 Generalized coordinates and coordinate transformation 18 2.3.3 Explicit expression of displacement 23 2.4 Numerical examples 26 2.4.1 Complete profiles of normal-mode synthetics 28 2.4.2 Effects of gravity and attenuation on waveforms 33 2.4.3 Effects of upper-mantle radial anisotropy 38 2.4.4 Sensitivity of surface waves on upper-mantle density and P-wave speed 38 2.5 Conclusions 42 Chapter 3 Wavelet-based Measurement of Surface-wave Phase Velocity 44 3.1 Introduction 44 3.2 Overview of wavelet propagator 46 3.3 Phase velocity corrections 50 3.3.1 Correction for 2π-phase ambiguity 50 3.3.2 Correction for small phase misfit 51 3.4 Verification in heterogeneous models 55 3.5 Conclusions 56 Chapter 4 Surface-wave Tomography in Southern Taiwan 59 4.1 Introduction 59 4.2 Data 62 4.3 Two-station phase velocity measurements 69 4.4 Shear-wave speed: Two-step inversion of two-station dispersion curves 69 4.4.1 Multiscale inversion 70 4.4.2 Lateral variation of phase velocity 71 4.4.3 Inverting for shear-wave perturbation 79 4.5 Discussion 86 4.5.1 Crustal thickness beneath the Costal Range 87 4.5.2 Crustal structure beneath the Central Range 88 4.5.3 High velocity layer beneath the Deformation Front 89 4.5.4 Comparison with local seismic tomography 91 4.5.5 Is the shear-wave image biased by the regularization scheme we adopt? 93 4.5.6 Topography effect on interstation phase velocity 96 4.5.7 Is density resolvable? 98 4.6 Conclusions 102 Appendix A Appraisal of sensitivity kernels 104 Appendix B Variable weightings for different types of model sets 107 Appendix C Derivation of modal frequency and phase velocity sensitivity kernels with respect to (α,β,γ') 109 References 115 | |
| dc.language.iso | en | |
| dc.subject | 本徵振盪理論地震圖 | zh_TW |
| dc.subject | 表面波層析成像 | zh_TW |
| dc.subject | 相速度 | zh_TW |
| dc.subject | 小波 | zh_TW |
| dc.subject | 弧陸碰撞 | zh_TW |
| dc.subject | arc-continent collision | en |
| dc.subject | surface-wave tomography | en |
| dc.subject | phase velocity | en |
| dc.subject | wavelet | en |
| dc.subject | normal-mode synthetic seismograms | en |
| dc.title | 本徵振盪理論地震圖的推導與實踐 — 台灣南部之表面波層析成像 | zh_TW |
| dc.title | Normal-mode synthetics and application – Surface-wave tomography beneath southern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 喬凌雲,龔源成,黃柏壽 | |
| dc.subject.keyword | 本徵振盪理論地震圖,表面波層析成像,相速度,小波,弧陸碰撞, | zh_TW |
| dc.subject.keyword | normal-mode synthetic seismograms,surface-wave tomography,phase velocity,wavelet,arc-continent collision, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-08 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| Appears in Collections: | 地質科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 14.76 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
