Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching Fuh Lin)
dc.contributor.authorShang-Hong Linen
dc.contributor.author林上弘zh_TW
dc.date.accessioned2021-06-16T22:59:00Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citation[1] Guangjin Zhao , Youjun He , and Yongfang Li, “6.5% Efficiency of Polymer
Solar Cells Based on poly (3‐hexylthiophene) and Indene‐C60 Bisadduct by
Device Optimization, Adv. Mater. 22 (2010) 4355–4358.
[2] Guangjin Zhao , Youjun He , and Yongfang Li, “6.5% Efficiency of Polymer
Solar Cells Based on poly (3‐hexylthiophene) and Indene‐C60 Bisadduct by
Device Optimization, Adv. Mater. 22 (2010) 4355–4358.
[3] Cheng, Y. J., C. H. Hsieh, et al, Combination of indene-c60 bis-adduct
andcross-linked fullerene interlayer leading to highly efficient inverted polymer
solar cells, J. Am. Chem. Soc.132 (2010) 17381–17383
[4] Lin, Y. H., P. C. Yang, et al. High-efficiency inverted polymer solar cells with
solution-processed metal oxides, Solar Energy Materials and Solar Cells. 95 (2011) 2511-2515.
[5] Chang, C. Y., C. E. Wu, et al. Enhanced performance and stability of a polymer
solar cell by incorporation of vertically aligned cross-linked fullerene nanorods,
Angew Chem Int Ed Engl. 50 (2011) 9386-9390.
[6] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll. Roles of donor and
acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,
Applied Physics Letters. 90 (2007) 163511.
[7] Pierre-Luc T. Boudreault, Ahmed Najari, and Mario Leclerc. Processable
Low-Bandgap Polymers for Photovoltaic Applications, Chem. Mater. 23 (2011) 456–469.
[8] K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande. Low-band gap
polymers for photovoltaic applications, Thin Solid Films. 451 (2004) 7–11.
[9] Yi-Chun Chen, Chao-Ying Yu, Yu-Ling Fan, Ling-I Hung, Chih-Ping Chen and
Ching Ting. Low-bandgap conjugated polymer for high efficient photovoltaic applications, Chem. Commun. 46 (2010) 6503–6505.
[10] Sung Heum Park, Anshuman Roy, Serge Beaupre, Shinuk Cho, Nelson Coates, Ji Sun Moon, Daniel Moses, Mario Leclerc, Kwanghee Lee, and Alan J. Heeger. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics. 3 (2009).
[11] J.Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials. 6 (2007) 497 - 500.
[12]E. Bundgaard and F. C. Krebs. Low band gap polymers for organic photovoltaics, Solar energy materials and solar cells. 91 (2007) 954–985.
[13] Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, and Alan J. Heeger. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 23 (2011) 1679–1683.
[14] A. K. K. Kyaw, X. W. Sun,C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93 (2008) 221107.
[15] Yongxiang Zhu, Xiaofeng Xu, Lianjie Zhang, Junwu Chen, Yong Cao. High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO, Solar Energy Materials & Solar Cells. 97 (2012) 83–88.
[16] Vishal Shrotriya, Gang Li, Yan Yao, Chih-Wei Chu, and Yang Yang. Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88 (2006) 073508.
[17] Paul H.W‥obkenberg, Donal D.C. Bradley, David Kronholm, Jan C. Hummelen, Dago M. de Leeuw, Michael Colle, Thomas D. Anthopoulos. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synthetic Metals. 158 (2008) 468–472.
[18] Yan Yao, Chenjun Shi, Gang Li, Vishal Shrotriya, Qibing Pei, and Yang Yang. Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization, Appl. Phys. Lett. 89 (2006) 153507.
[19] David Mühlbacher, Markus Scharber, Mauro Morana, Zhengguo Zhu, David Waller, Russel Gaudiana, and Christoph Brabec. High Photovoltaic Performance of a Low-Bandgap Polymer, Adv. Mater. 18 (2006) 2884–2889.
[20] Yingping Zou, Ahmed Najari, Philippe Berrouard, Serge Beaupre, Badrou Reda Aich, Ye Tao, and Mario Leclerc. A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells, J. AM. CHEM. SOC. 132 (2010) 5330–5331.
[21] Chen, H. Y., J. Hou, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics. 3 (2009) 649-653.
[22] Tan, Z., W. Zhang, et al. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode, Adv Mater. 24 (2012) 1476-1481.
[23] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864–868.
[24] G. Li, V. Shrotriya, Y. Yao, G. Li and Y. Yang. Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance, Appl. Phys. Lett. 89 (2006) 063505.
[25] Y. Zhao, Z. Xie, Y. Qu, Y. Geng and L. Wang. Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk- heterojunction photovoltaic cells, Appl. Phys. Lett. 90 (2007) 043504.
[26] Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li, Claire Ray, and Luping Yu. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater. 22 (2010) 135–138.
[27] Su, M. S., C. Y. Kuo, et al. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives, Adv. Mater. 23 (2011) 3315-3319.
[28] Moon, J. S., C. J. Takacs, et al. Effect of Processing Additive on the Nanomorphology of a Bulk Heterojunction Material, Nano Letters. 10 (2010) 4005-4008.
[29] Hoven, C. V., X.-D. Dang, et al. Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives, Advanced Materials. 22 (2010) 63-66.
[30] Chu, T.-Y., S. Alem, et al. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance, Applied Physics Letters. 98 (2011) 253301.
[31] Chu, T.-Y., S.-W. Tsang, et al. High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability, Solar Energy Materials and Solar Cells. 96 (2012) 155-159.
[32] Claudia Piliego, Thomas W. Holcombe, Jessica D. Douglas, Claire H. Woo, Pierre M. Beaujuge, and Jean M. J. Frechet. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells, J. AM. CHEM. SOC. 132 (2010) 7595–7597.
[33] Chu, T.-Y., J. Lu, et al. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2′,3′-d]silole Copolymer with a Power Conversion Efficiency of 7.3%, J. AM. CHEM. SOC. 133 (2011) 4250-4253.
[34] Wang, E., Z. Ma, et al. An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells, J. AM. CHEM. SOC. 133 (2011) 14244-14247.
[35] Zhang, Y., Z. Li, et al. Bulk heterojunction solar cells based on a new low-band-gap polymer: Morphology and performance, Organic Electronics. 12 (2011) 1211-1215.
[36] Sigma-Aldrich MSDS.
[37] Zhao, D. W., S. T. Tan, et al. Optimization of an inverted organic solar cell, Solar Energy Materials and Solar Cells. 94 (2010) 985-991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64774-
dc.description.abstract人類在近年來將面對到的最大問題為能源短缺,由於石油藏量與日漸減,價
格卻是不停上升,為了填補能源缺口,有多種可行的替代性能源成為各國研究的
重點,太陽能幾乎取之不盡的特性,使得太陽能電池被視為能夠填補能源缺口的
可行方案之一。而新發展高分子太陽能電池由於其重量輕、可撓性等性質且可大面積低成本製程,引起了廣泛的注意。但在高分子太陽能電池中,施體(Donor)和受體(Acceptor)必須要有好的奈米交錯結構,才能得到較高效率。此奈米交錯結構通常是相當雜亂,不易控制。在此篇論文中,透過許多實驗之探討,發現使用CB和DCB兩種溶劑形成混合溶劑來製作倒置結構高分子太陽能電池,可以使元件特性改善許多,論文中深入討論CB和DCB兩種溶劑對奈米交錯結構的影響。
現今高分子太陽能電池主動層最常使用的主動層材料為P3HT/PCBM,P3HT的最高分子佔有軌道(HOMO)值(-5.0eV)和PCBM的最低未被分子佔有軌道(LUMO)值(-3.91eV)的差值非常的小。此缺點限制了元件的開路電壓(Voc),因此使得元件的效率提升受到限制。為了提升開路電壓,一種新的n型富勒烯衍生物Indene-C60 bisadduct(ICBA)被提出,此種新的n型材料因為擁有較高的最低未被分子佔有軌道(LUMO)值(-3.74eV)比PCBM高0.17eV,因此可使元件的開路電壓有效的提升,進而提升元件效率。
從另外一方面來看,P3HT因為其能隙只有2eV,限制了太陽光譜的吸收,使短路電流也受到限制,造成元件效率無法再提升,因此最近許多不同種類的低能隙材料來取代P3HT,藉由降低能隙來增加長波段光子的吸收提升短路電流,使元件的效率更進一步的提升。
因此論文內容主要分成兩個主動層系統:其一是ICBA/P3HT,可使元件擁有較高的開路電壓。另一個是PBDTTT-C/PC71BM,可增加長波段光子的吸收因此使元件有較高的短路電流。
在用ICBA/P3HT為主動層的系統下。本論文藉由DCB和CB形成混合溶劑來提高對於ICBA的溶解度,使得主動層溶液中的溶解不完全的大顆溶質顆粒減少使得主動層的成膜較為完整,且加入導電高分子PVK來改善因為不同溶劑所造成的水平相分離,以及利用不同溶劑比例來調整主動層乾燥時間藉此控制主動層厚度,最後在氮氣下對元件進行後退火。藉由以上的改進使得元件的開路電壓從0.66V提升到0.82V且效率由2.60%提升到4.27%。
另外在用PBDTTT-C/PC71BM為主動層的系統下。本論文使用DCB和CB形成混合溶劑作為主動層的溶劑,並在加入DIO作為溶劑添加劑製作倒置結構高分子太陽能電池。混合溶劑的使用讓主動層的形貌獲得改善因此有較好的載子傳輸,之後再對主動層的厚度以及中介層氧化鉬的厚度進行最佳化,藉由以上的改進,使元件的短路電流從3.82 mA/cm2提升到13.50 mA/cm2,填充因子從33%提升到57%,也因此使元件光電轉換效率從0.92%提升到5.35%。
zh_TW
dc.description.abstractThe humanity’s most important problem is the energy shortage. Due to the increasing oil price, several renewable energy sources are investigated to fill the energy requirement gap between demand and supply. Polymer solar cells had been one of the most promising green energy technologies due to the possibility of achieving large-area, lightweight and flexible devices with low fabrication cost. The device performed better power conversion efficiency when the nano-interpenetrating networks between donor and accptor was better. However, we had difficult to control the disorder nano-interpenetrating networks. In this work, we found that we used CB and DCB as mixed solvent to fabricate the inverted polymer solar cell to enhence the performance of device through many experimental investigations. Moreover, we analyzed the effects of mixed solvent on nano-interpenetrating networks. One is P3HT/ICBA, which leads to higher open voltage of device. Another is PBDTTT-C/PC71BM, which harvests more sunlight and leads to higher short-circuit current density of device.
With P3HT/ICBA as active layer, we used CB and DCB as mixed solvent to fabricate the inverted polymer solar cell to enhance the solubility of ICBA in photoactive ink. Furthermore, we added conductive polymer polyvinylcarbazole (PVK) to reduce the horizontal phase separation caused by different boiling point of solvents. In addition, we used different ratio of CB and DCB to control the dried time of active layer. In the end, we treated the device with post annealing. By the above improvements, the open circuit voltage of device can be enhanced from 0.68V to 0.82V and the (PCE) from 2.60% to 4.27%.
With PBDTTT-C/PC71BM as active layer, we used CB and DCB as photoactive ink to fabricate the inverted polymer solar cell. With mixed solvent, The morphology of active layer was improved, which causes better transport of carrier. In addition, we optimize the thickness of active layer and the thickness of MoO3. By the above improvements, the short-circuit current density of device enhanced from 3.82 mA/cm2to 13.50 mA/cm2 and the power conversion efficiency from 0.92% to 5.35%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:59:00Z (GMT). No. of bitstreams: 1
ntu-101-R99941038-1.pdf: 4316643 bytes, checksum: ae1ab0982d5b25bf4814ee02f6c0a6da (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
ABSTRACT V
目錄 VII
圖目錄 IX
表目錄 XII
第一章、緒論 1
1.1研究背景 1
1.1.1 前言 1
1.1.2 太陽能電池發展 3
1.1.3 有機太陽能電池之發展 5
1.2文獻回顧 7
1.2.1倒置結構高分子太陽能電池 7
1.2.2 新n型富勒烯衍生物受體材料 10
1.2.3 低能隙導電高分子施體材料 13
1.3參考資料 15
第二章、實驗理論 23
2.1太陽能電池基本理論 23
2.1.1 太陽能電池與太陽光能概述 23
2.1.2 太陽能電池工作機制 24
2.1.3 太陽能電池等效模型及各項參數分析 26
2.2高分子太陽能電池工作理論 29
2.2.1 導電高分子與高分子太陽能電池概述 29
2.2.2 高分子太陽能電池工作機制 31
2.3 參考資料 33
第三章、不同溶劑對新型材料ICBA的影響以及研究 36
3.1新型受體材料ICBA介紹 36
3.2實驗動機 38
3.3元件製備流程 38
3.3.1 溶液配置流程 38
3.3.2 元件製作步驟 40
3.4結果與討論 42
3.4.1 氧化鋅缺陷以及其對主動層形貌影響 42
3.4.2 紫外線臭氧和空氣電漿對ITO功函數的影響 45
3.4.3 不同溶劑對ICBA在主動層形貌上的影響 48
3.5結論 50
3.6參考資料 50
第四章、使用混和溶劑改善ICBA/P3HT主動層形貌之研究 54
4.1實驗動機 55
4.2元件製作流程 55
4.2.1 溶液配置流程 55
4.2.2 元件製作步驟 57
4.3結果與討論 59
4.3.1使用導電高分子PVK改善主動層水平相分離 59
4.3.2 不同溶劑比例調變對元件影響 63
4.3.3 元件特性分析 65
4.3.4 材料核磁共振譜分析 68
4.4結論 70
4.5參考資料 70
第五章、使用混和溶劑製作低能隙材料倒置結構太陽能電池 74
5.1 低能隙材料介紹 74
5.1.1 低能隙材料簡介 74
5.1.2 受體材料PC71BM的選擇 76
5.1.3 低能隙材料PBDTTT-C介紹 78
5.2 實驗動機 79
5.3 元件製作流程 80
5.3.1 溶液配置流程 80
5.3.2 元件製作步驟 81
5.4 結果與討論 84
5.4.1混和溶劑及添加劑對PBDTTT-C主動層形貌影響 84
5.4.2元件特性分析 87
5.4.3元件各項參數最佳化討論及分析 89
5.5 結論 96
5.6 參考資料 96
第六章、總結論與未來展望 102
6.1 總結論 102
6.2 未來展望 103
著作列表 105
dc.language.isozh-TW
dc.subject倒置高分子太陽能電池zh_TW
dc.subject混合溶劑zh_TW
dc.subjectIndene-C60 bisadduct( ICBA)zh_TW
dc.subjectPBDTTT-Czh_TW
dc.subject主動層形貌zh_TW
dc.subjectinverted polymer solar cellsen
dc.subjectmixed solventen
dc.subjectICBAen
dc.subjectPBDTTT-Cen
dc.subjectmorphology of active layeren
dc.title倒置有機無機混成太陽能電池其主動層形貌
改良與分析
zh_TW
dc.titleMorphology Improvement and Analysis of Active Layer in Inverted Organic-Inorganic Hybrid Solar Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰,陳奕君,吳肇欣,陳協志
dc.subject.keyword倒置高分子太陽能電池,混合溶劑,Indene-C60 bisadduct( ICBA),PBDTTT-C,主動層形貌,zh_TW
dc.subject.keywordinverted polymer solar cells,mixed solvent,ICBA,PBDTTT-C,morphology of active layer,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2012-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved