請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64771
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Hsuan-Chia Kao | en |
dc.contributor.author | 高萱嘉 | zh_TW |
dc.date.accessioned | 2021-06-16T22:58:56Z | - |
dc.date.available | 2016-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-08 | |
dc.identifier.citation | [1] W. F. Smith, Structure and properties of engineering alloys. The McGraw-Hill Companies, USA
[2] R. R. Boyer, An overvier on the use of titanium in the aerospace industry, Journal of Materials Science and Engineering 213 (1996) 103-114 [3] E. O. Ezugwu and Z. M. Wang, Titanium alloys and their machinability - a review, Journal of Materials Processing Technology 68 (1997) 262-274 [4] F. Klocke and G. Eisenblatter, Dry cutting, Annals of the CIRP - Manufacturing Technology 46 (2) (1997) 519-526 [5] J. F. Kahles, M. Field, D. Eylon, and F. H. Froes, Machining of titanium alloys, Journal of Metals 37 (1985) 27-35 [6] M. J. Bermingham, J. Kirsch, S. Sun, S. Palanisamy, and M. S. Dargusch, New Observation on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, Journal of Machine Tools and Manufacture 51 (2011) 500-511 [7] P. D. Hartung, and B. M. Kramer, Tool Wear in Titanium Machining, Annals of the CIRP 31 (1) (1982) 75-80 [8] A. K. M. N. Amin, A. F. Ismail, and M. K. N. Khairusshima, Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy - Ti-6Al-4V, Journal of Materials Processing Technology 192-193 (2007) 147-158 [9] R. Komanduri and M. Lee, The ledge tool : a new cutting tool insert, Journal of Engineering for Industry 107 (1985) 99-106 [10] S. Lei, and W. Liu, High-speed machining of titanium alloys using the driven rotary tool, Journal of Machine Tools and Manufacture 42 (2002) 653-661 [11] E. O. Ezugwu, R. B. Da Silva, J. Bonney, and A. R. Machado, The effect of argon enriched enviroment in high speed machining of titanium alloy, Tribology Transactions 48 (1) (2005) 1-6 [12] T. Yamasaki, K. Miki, U. Sato, and M. Sato, Cooling air cutting of Ti-6Al-4V alloy, Journal of Japan Institute of Light Metals 53 (10) (2003) 416-420 [13] S. M. Yuan, L.T. Yan, W. D. Liu, and Q. Liu, Effects of cooling air temperature on cryogenic machining of Ti-6Al-4V, Journal of Materials Processing Technology 211 (3) (2011) 356-362 [14] 劉得杏,複合式冷卻與潤滑用於Ti-6Al-4V車削之研究,國立台灣大學機械工程學系碩士論文,民國94年 [15] T. Obikawa, K. Funai, and Y. Kamata, Air jet assisted machining of titanium alloy, Journal of Advanced Mechanical Dsign, Systems, and Manufacturing 5 (2) (2011) 139-149 [16] Z. Y. Wang and K. P. Rajurkar, Cryogenic machining of hard-to-cut materials, Wear 239 (2000) 168-175 [17] S. Y. Hong, I. Markus, and W. C. Jeong, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Journal of Machine Tools and Manufacture 41 (2001) 2245-2260 [18] K. A. Venugopal, S. Paul, Yui, and A. B. Chattopadhyay, Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling, Wear 262 (2007) 1071-1078 [19] R. L. Judd, H. S. MacKenzie and M. A. Elbestawi, An investigation of a heat pipe cooling system for use in turning on a lathe, Journal of Advanced Manufacturing Technology 10 (1995) 357-366 [20] A. N. Haq and T. Tamizharasan, Investigation of the effects of cooling in hard turning operations, Journal of Advanced Manufacturing Technology 30 (2006) 808-816 [21] J. Liu and Y. K. Chou, Cutting tool temperature analysis in heat-pipe assisted composite machining, Transactions of the ASME 129 (2007) 902-910 [22] R. Y. Chiou, L. Liu, J. S. J. Chen, and M. T. North, Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments, Journal of Advanced Manufacturing Technology 31 (2007) 905-914 [23] M. C. Shaw, Metal cutting principles, Oxford University Press, 1984 [24] W. A. K. G. Boothroyd, Fundamentals of metal machining and machine tools, Third Edition ed., Boca Raton, Taylor and Francis, 2006 [25] S. Ramalingam and P. K. Wright, Abrasive wear in machining: experiment with material of controlled microstructure, Journal of Engineering Materials and Technology 103 (1981) 151-156 [26] R. Ramaswami, The effect of the build up edge (BUE) on the wear of cutting tools, Wear 18 (1971) 1-10 [27] 王廷飛, 表面組織解說, 前程出版社, 1984 [28] M. J. Donachie, Titanium : a Technical Guide, Metals Park, ASM International , 1988 [29] 依日光, 熱管技術理論實務, 復漢出版社, 1986 [30] J. E. Deveral and J. E. Kemme, Satellite heat pipe, USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, 1970 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64771 | - |
dc.description.abstract | Ti-6Al-4V具有優異的物理和機械性質並具生物相容性,被廣泛應用於眾多工業領域,但其特殊的性質會導致切削時產生的熱量累積在刀尖,造成嚴重的刀具磨耗,切削速度亦受限於30 m/min至60m/min間,業界加工時需要使用大量的切削液以降低刀具溫度。
為了達到減少切削液用量但又能減輕刀具磨耗的目的,本研究提出一個結合熱管與冰水循環的冷卻系統,將其架設於刀片上進行Ti-6Al-4V車削實驗,並與乾切削、濕切削、0℃冷空氣切削、最少量潤滑(Minimum quantity lubrication, MQL)等方式比較,分析不同切削速度下(60 m/min、90 m/min、120 m/min),以上切削環境對刀具溫度、刀具磨耗、切削力及表面粗糙度之影響。研究結果顯示,熱管冷卻系統具有將熱量由切削區域傳出的效果,在切削速度60 m/min及90 m/min下同時使用熱管冷卻系統和最少量潤滑可得到比濕切削更少的刀腹磨耗量。使用直徑較大而具有較高熱輸送量的熱管冷卻系統與最少量潤滑車削Ti-6Al-4V時,切削速度90 m/min之刀具壽命比濕切削延長30%,當切削速度提高至120 m/min此冷卻方式的刀腹磨耗量亦比濕切削低。因此並用熱管冷卻系統和最少量潤滑是一種可取代濕切削而較為環保的切削輔助方式。 | zh_TW |
dc.description.abstract | Titanium alloy (Ti-6Al-4V) has superior physical properties, mechanical properties and biocompatibility. It is an attractive material in many engineering fields. In machining Ti-6Al-4V, due to low thermal conductivity of the material the generated heat during machining cannot be conducted through the work piece and chips effectively, which is resulted in rapid tool wear. It has been reported that cutting speed of Ti-6Al-4V is limited to 30 m/min and 60 m/min. Cutting fluids have been used in machining operations in order to reduce cutting temperature.
In this study, a heat pipe cooling system was used in turning of Ti-6Al-4V at different cutting speeds (60 m/min, 90 m/min, 120 m/min). The tool temperature and tool wear of uncoated carbide inserts, the cutting force and surface roughness have been compared to dry, wet, compressed cold air at 0℃ and minimum quantity lubrication (MQL) cooling environments . The results show that the heat pipe cooling system can effectively remove the heat generated at the tool-chip interface in machining. The flank wear values of the cutting tool with the combination of heat pipe cooling system and MQL is lower than which with flood coolant at the cutting speed of 60 m/min and 90 m/min. Compare to conventional wet cutting, tool life extension of using a heat pipe of larger diameter and MQL is 30% at a cutting speed of 90 m/min. With the use of larger diameter heat pipe cooling system and MQL, flank wear values of the cutting tool is lower than wet cutting at a cutting speed of 120 m/min. Therefore, the combination of heat pipe cooling system and minimum quantity lubrication is a technique which can reduce the use of conventional cutting fluids in turning of Ti-6Al-4V. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:56Z (GMT). No. of bitstreams: 1 ntu-101-R99522716-1.pdf: 7384087 bytes, checksum: dd39e393b86a6e85b46a4b496e259c6c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試審定書 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目的 9 1.4 本文架構 10 第二章 相關理論 11 2.1 切削理論 11 2.1.1 切削力學 11 2.1.2 切屑形成與分類 17 2.2 磨耗理論 18 2.3 表面粗糙度 23 2.3.1 表面組織定義 23 2.3.2 表面粗糙度的表示法 26 2.4 碳化鎢刀具性質 28 2.5 鈦合金性質 28 2.5.1 添加元素對鈦合金的影響 28 2.5.2 鈦合金的分類 29 2.6 熱管原理 32 第三章 實驗設備與規劃 34 3.1 實驗設備 34 3.2 實驗規劃 45 3.3 熱管冷卻系統配置 48 第四章 實驗結果與討論 49 4.1 熱管冷卻系統與其他切削環境之比較 49 4.1.1 刀具溫度 49 4.1.2 刀具磨耗 55 4.1.3 表面粗糙度 62 4.1.4 切削力(FZ) 65 4.2 熱管尺寸對刀具磨耗的影響 67 4.2.1 切削速度90 m/min之實驗結果 67 4.2.2 切削速度120 m/min之實驗結果 70 4.3 同時使用熱管冷卻系統與濕切削之結果 71 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 73 參考文獻 74 | |
dc.language.iso | zh-TW | |
dc.title | 熱管冷卻系統用於車削Ti-6Al-4V之研究 | zh_TW |
dc.title | A Study of Heat Pipe Cooling System in Turning of Ti-6Al-4V | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅勝益,趙崇禮 | |
dc.subject.keyword | 車削,Ti-6Al-4V,熱管,刀具磨耗, | zh_TW |
dc.subject.keyword | turning of Ti-6Al-4V,heat pipe,tool wear, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。