請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64770
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
dc.contributor.author | Yu-Ci Syu | en |
dc.contributor.author | 徐鈺淇 | zh_TW |
dc.date.accessioned | 2021-06-16T22:58:55Z | - |
dc.date.available | 2015-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-08 | |
dc.identifier.citation | 1.Abdellatif, A. G.; Preat, V.; Taper, H. S.; Roberfroid, M. (1991) The modulation of rat liver carcinogenesis by perfluorooctanoic acid, a peroxisome proliferator. Toxicology and Applied Pharmacology, 111, 530-537.
2.Bare, J. C.; Hofstetter, P.; Pennington, D. W.; Haes, H. A. (2000) Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5, 319-326. 3.Biswas, W. K. (2009) Life Cycle Assessment of Seawater Desalinization in Western Australia. World Academy of Science, Engineering and Technology 56. 4.Chen, J.; Zhang, P. Y.; Liu, J. (2007) Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 19, 387-390. 5.Chen, Y. C.; Lo, S. L.; Kuo, J. (2011) Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid. Water Res, 45, 4131-4140. 6.Deng, S.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. (2011) Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res, 45, 1774-1780. 7.Domenech, X.; Ayllon, J. A.; Peral, J.; Rieradevall, J. (2002) How Green Is a Chemical Reaction? Application of LCA to Green Chemistry. Environ. Sci. Technol., 36, 5517-5520. 8.European Chemicals Bureau, E. C. B. (2003) Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. 9.Favara, P. J.; Krieger, T. M.; Boughton, B.; Fisher, A. S.; Bhargava, M. (2011) Guidance for Performing Footprint Analyses and Life-Cycle Assessments for the Remediation Industry. 10.Fujii, S.; Tanaka, S.; Lien, N. P. H.; Qiu, Y.; Polprasert, C. (2007) New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper. Journal of Water Supply: Research and Technology. 11.Graedel, T. E.; Allenby, B. R. (2003) Industrial ecology. Prentice Hall. 12.Gupta, V. K.; Jain, R.; Mittal, A.; Saleh, T. A.; Nayak, A.; Agarwal, S.; Sikarwar, S. (2012) Photo-catalytic degradation of toxic dye amaranth on TiO(2)/UV in aqueous suspensions. Materials Science & Engineering C-Materials for Biological Applications, 32, 12-17. 13.Hekster, F. M. (2002) Perfluoroalkylated substances : aquatic environmental assessment. Rijksinstituut voor Kust en Zee/RIKZ: Den Haag. 14.Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S. (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol., 39, 2383-2388. 15.Hu, X.; Zhu, J.; Ding, Q. (2011) Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition. Journal of Hazardous Materials, 191, 258-268. 16.Huotari, H. M.; Huisman, I. H.; Tragardh, G. (1999) Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode. J. Membr. Sci., 156, 49-60. 17.Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. (2003) IMPACT 2002+: A new life cycle impact assessment methodology. . The International Journal of Life Cycle Assessment, 8, 324-330. 18.Kingman, S. W.; Rowson, N. A. (1998) Microwave treatment of minerals - A review. Miner Eng, 11, 1081-1087. 19.Kutsuna, S.; Hori, H. (2007) Rate constants for aqueous-phase reactions of SO4− with C2F5C(O)O− and C3F7C(O)O− at 298 K. International Journal of Chemical Kinetics, 39, 276-288. 20.Luhken, A.; Bader, H. J. Energy input from microwaves and ultrasound –examples of new approaches to green chemistry. 21.Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. (2012) Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol., 46, 5528-5534. 22.Lin, A. Y. C.; Panchangam, S. C.; Ciou, P. S. (2010) High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere, 80, 1167-1174. 23.Lin, A. Y. C.; Panchangam, S. C.; Lo, C. C. (2009) The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution, 157, 1365-1372. 24.Liu, C. S.; Higgins, C. P.; Wang, F.; Shih, K. (2012) Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology, 91, 46-51. 25.Moriwaki, H.; Takagi, Y.; Tanaka, M.; Tsuruho, K.; Okitsu, K.; Maeda, Y. (2005) Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environ. Sci. Technol., 39, 3388-3392. 26.Mulvihill, M. J.; Beach, E. S.; Zimmerman, J. B.; Anastas, P. T. (2011) Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review of Environment and Resources, 36. 27.Okitsu, K.; Iwasaki, K.; Yobiko, Y.; Bandow, H.; Nishimura, R.; Maeda, Y. (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason. Sonochem., 12, 255-262. 28.Organisation for Economic Co-operation and Development, O. (2002) Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts., ENV/JM/RD 17/Final. 29.Ortiz, M.; Raluy, R. G.; Serra, L. (2007) Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination, 204, 121-131. 30.Parsons, S. (2004) Advanced Oxidation Processes for Water and Wastewater Treatment. 368. 31.Riesz, P.; Berdahl, D.; Christman, C. L. (1985) FREE-RADICAL GENERATION BY ULTRASOUND IN AQUEOUS AND NONAQUEOUS SOLUTIONS. Environ. Health Perspect., 64, 233-252. 32.San, N.; Hatipoglu, A.; Kocturk, G.; Cinar, Z. (2002) Photocatalytic degradation of 4-nitrophenol in aqueous TiO(2) suspensions: Theoretical prediction of the intermediates. J. Photochem. Photobiol. A-Chem., 146, 189-197. 33.Schultz, M. M.; Barofsky, D. F.; Field, J. A. (2003) Fluorinated Alkyl Surfactants. Environmental Engineering Science, 20, 487-501. 34.Siegrist, R. L.; Crimi, M.; Simpkin, T. J. (2011) In Situ Chemical Oxidation for Groundwater Remediation. Springer. 35.Singh, B.; Stromman, A. H.; Hertwich, E. G. (2011) Comparative life cycle environmental assessment of CCS technologies. International Journal of Greenhouse Gas Control, 5, 911-921. 36.Song, C.; Chen, P.; Wang, C.; Zhu, L. (2012) Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365nm UV irradiation. Chemosphere, 86, 853-859. 37.Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K. (2011) Fate of Perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res, 45, 3925-3932. 38.Tang, H.; Xiang, Q.; Lei, M.; Yan, J.; Zhu, L.; Zou, J. (2012) Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chem Eng J, 184, 156-162. 39.Tangsubkul, N.; Parameshwaran, K.; Lundie, S.; Fane, A. G.; Waite, T. D. (2006) Environmental life cycle assessment of the microfiltration process. J. Membr. Sci., 284, 214-226. 40.Thiruvenkatachari, R.; Kwon, T. O.; Jun, J. C.; Balaji, S.; Matheswaran, M.; Moon, I. S. (2007) Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). Journal of Hazardous Materials, 142(1-2), 308-314. 41.Thompson, J.; Eaglesham, G.; Reungoat, J.; Poussade, Y.; Bartkow, M.; Lawrence, M.; Mueller, J. F. (2011) Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere, 82, 9-17. 42.U.S.EPA. (2002) Hazard assessment of perfluorooctanoic acid and its salts. 43.U.S.EPA. (2009) Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 44.Vecitis, C.; Park, H.; Cheng, J.; Mader, B.; Hoffmann, M. (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China, 3, 129-151. 45.Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R. (2008) Enhancement of Perfluorooctanoate and Perfluorooctanesulfonate Activity at Acoustic Cavitation Bubble Interfaces. The Journal of Physical Chemistry C, 112, 16850-16857. 46.Wang, K. H.; Hsieh, Y. H.; Chou, M. Y.; Chang, C. Y. (1999) Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl. Catal. B-Environ., 21, 1-8. 47.Wang, Y.; Zhang, P. (2011) Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials, 192, 1869-1875. 48.Wang, Y.; Zhang, P.; Pan, G.; Chen, H. (2008) Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. Journal of Hazardous Materials, 160, 181-186. 49.Yang, S.; Wang, P.; Yang, X.; Wei, G.; Zhang, W.; Shan, L. (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of Environmental Sciences-China, 21, 1175-1180. 50.Yu, J.; Lv, L.; Lan, P.; Zhang, S.; Pan, B.; Zhang, W. (2012) Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon. Journal of Hazardous Materials, 225–226, 99-106. 51.Zhao, D.; Cheng, J.; Vecitis, C. D.; Hoffmann, M. R. (2011) Sorption of Perfluorochemicals to Granular Activated Carbon in the Presence of Ultrasound. The Journal of Physical Chemistry A, 115, 2250-2257. 52.江玄政、黃國恭、黃雪娟,「ISO 14000 系列生命週期評估技術與應用手冊」,經濟部工業局,2001。 53.李育儒,「塗佈卡紙之生命週期評估」,碩士論文,國立台北大學自然資源與環境管理研究所,新北市,2009。 54.李育輯,「以微波活化過硫酸鹽破壞去除水中全氟辛酸之研究」,博士論文,國立台灣大學環境工程研究所,台北市,2010。 55.李昱宏,「利用生命週期評估探討五種移除水中硝酸鹽之環境友善技術」,碩士論文,國立台灣大學環境工程研究所,台北市,2010。 56.呂凌霄,不同區段的電磁波之波長與頻率分布,http://www.ss.ncu.edu.tw/~lyu/lecture_files/2002Spring/IntroSpace_exam/IntroSpace_3.html,Accessed June 15. 57.林怡伶,「利用過硫酸鹽在室溫下氧化全氟辛酸之研究」,碩士論文,國立台灣大學環境工程研究所,台北市,2011。 58.高濂、鄭珊、張青紅,「奈米光觸媒」,五南圖書出版股份有限公司。 59.許子承,「以薄膜外加電場應用於含全氟辛酸廢水之研究」,碩士論文,國立台灣大學環境工程研究所,台北市,2010。 60.許富翔,「稻稈焙燒產製生質煤炭之生命週期評估」,碩士論文,國立台灣大學環境工程研究所,台北市,2011。 61.張世佳,「以微波水熱法輔助過硫酸鹽降解水中全氟辛酸」,碩士論文,國立台灣大學環境工程研究所,台北市,2008。 62.張丞毅,「鹼性條件下臭氧去除水中全氟辛酸」,碩士論文,國立台灣大學環境工程研究所,台北市,2010。 63.粘婷婷,「水中偶氮染料之水質特性分析與光催化降解效能探討」,碩士論文,國立雲林科技大學環境與安全衛生工程研究所,雲林縣,2010。 64.楊英賢,「生命週期評估與不確定性分析應用於火力電廠與燃料選擇」,博士論文,國立成功大學環境工程研究所,台南市,2008. 65.楊奉儒、李吉祥、蔡金英、鄭旭軒、許順珠,「綠色化學技術於工研院研發現況」,工業技術研究院。 66.能源統計手冊,經濟部能源局,2010。 67.蔡宇庭,「水中天然有機物與濁度對外加電場薄膜處理程序之影響研究」,碩士論文,國立台灣大學環境工程研究所,台北市,2006。 68.蔡家弘,「超音波促進光催化氧化法去除水中全氟辛酸」,碩士論文,國立台灣大學環境工程研究所,台北市,2008。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64770 | - |
dc.description.abstract | 全氟辛酸(Perfluorooctanoic Acid, PFOA)是全氟化合物中最重要的衍生物,因具有環境持久性、生物累積性、長距離傳輸及人類毒性潛勢,被視為一種持久性有機污染物。另外,PFOA具高穩定性的碳-氟鍵結(C-F),因此不易藉由自然程序破壞,故許多關於降解PFOA的實驗室規模技術陸續被研發出來。但是,這些技術在處理過程中,添加的化學物質、能源使用、廢棄物處理等,皆可能對環境造成直接或間接衝擊,因此必須針對處理過程進行全面的評估。本研究之目的是以生命週期評估法分析三種實驗室規模的降解水中PFOA技術。這三種技術分別為:Case 1 以微波輔助高級氧化法降解水中全氟辛酸(microwave-induced persulfate oxidation, MIPO)、Case 2 以超音波促進光催化氧化法降解水中全氟辛酸(sonication-assisted photo-catalytic oxidation, SAPO)、Case 3 以薄膜外加電場去除水中全氟辛酸(electro-membrane filtration, EMF)。使用生命週期評估軟體SimaPro 7.2 及其內建之資料庫,對三案例材料製備和PFOA降解過程進行盤查分析後,再經 IMPACT 2002+評估模式量化其潛在衝擊。結果顯示,MIPO及SAPO以材料製備階段貢獻為主,而EMF則是降解實驗階段,三案例皆以電力耗用為環境衝擊之主要因素,故對環境之影響衝擊類別主要於非再生能源、氣候變遷、可吸入無機物項目,換算成損害評估結果,則對資源衝擊最大,其次是氣候變遷。以濃度標準功能單位(將PFOA之濃度去除至 30 ppm)來看,環境衝擊程度為Case 2 (SAPO) > Case 3 (EMF) > Case 1 (MIPO);若由重量功能單位(去除 6.15 mg的PFOA),結果則是Case 1 (MIPO) > Case 2 (SAPO) > Case 3 (EMF)。由本研究結果可知選用兩種不同功能單位,能源皆為關鍵因子,故如何提高能源效率、減少能源使用是未來需努力的方向。本研究之評估雖為實驗室規模,但最終評估後的結果,仍可供實場處理水中全氟辛酸作為參考,選擇對環境影響最友善的技術,以達到綠色化學的目標,即對環境和健康之最小危害。 | zh_TW |
dc.description.abstract | Perfluorooctanoic Acid (PFOA) is the most important derivative of the Perfluorinated Compounds (PFCs). It is an unnatural compound that appears in the environment as a result of human production processes. PFOA is used extensively in the manufacturing of fluoropolymers and a wide range of industrial products such as surfactants, fire retardants, as well as oil, stain and grease repellants. The life cycle of all PFOA related products including producing, using, and discarding, incurs the risk of water, air, and soil pollution, with water pollution being the most prevalent. Factors such as environmental persistence, bioaccumulation, long-range environmental transport issues, and potential toxicity to humans contribute to PFOA as being regarded as a one of the Persistent Organic Pollutants (POPs). Furthermore, PFOA is not easily destroyed by natural processes due to its extreme stability resulting from strong C-F bonds. There are currently a variety of methods for degrading PFOA in the water, however, these treatment processes may all cause direct or indirect impacts to the environment through the addition of chemicals, inefficient energy use, improper waste treatment, and so on. As such, a comprehensive assessment to determine appropriate treatment processes is essential. In this study, the main objective is using Life Cycle Assessment (LCA) to compare the environmental impacts of three environmentally friendly processes for the decomposition of PFOA from water. The three kinds of technologies are: (1) microwave-induced persulfate, MIPO; (2) sonication-assisted photo-catalytic oxidation, SAPO; and (3) electro-membrane filtration, EMF. Environmental assessments are carried out using SimaPro 7.2 LCA software and utilizing the IMPACT 2002+ methodology to evaluate the potential environmental impact. The results revealed the major causes of environmental impact for Case 1 (MIPO) and Case 2 (SAPO) are both materials preparation, and for Case 3 (EMF) is appling external magnetic field during electro-membrane treatment. The top three environmental impact categories for all three cases are non-renewable energy, global warming, and respiratory inorganics. While choose the functional unit of concentration standard (the concentration of PFOA removed to 30 ppm), the degree of environmental impact is Case 2 (SAPO) > Case 3 (EMF) > Case 1 (MIPO); and under the functional unit of weight (removal of 6.15 mg PFOA), the degree of environmental impact is Case 1 (MIPO) > Case 2 (SAPO) > Case 3 (EMF). Under two different functional units, the key factors are both energy consumption, so improving energy efficiency and reducing energy use are goals to reach in the future. The assessment of these laboratory-scale treatments for degrading PFOA from water will be valuable for real work sites. This may assist in identifying the most environmentally friendly technologies for achieving green chemistry goals, namely the minimization of environmental and health hazards. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:55Z (GMT). No. of bitstreams: 1 ntu-101-R99541132-1.pdf: 5113665 bytes, checksum: 186874823ebbaacb7cf49f16e0422912 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的及內容 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 PFOA之污染及危害 4 2.1.1 PFOA之物理化學性質 4 2.1.2 PFOA之污染 6 2.1.3 PFOA之危害 7 2.2 PFOA之處理技術 9 2.2.1 高級氧化法(Advanced Oxidation Processes, AOPs) 11 2.2.2 光催化氧化法(Photo-Catalytic Oxidation, PCO) 13 2.2.3 薄膜外加電場過濾程序(Electro-Membrane Filtration Process, EMF) 16 2.3 環境污染處理程序中之能源使用 19 2.3.1 微波 19 2.3.2 超音波 23 2.4 綠色化學 25 2.4.1 綠色化學之演進及發展 25 2.4.2 綠色化學原則 27 2.4.3 綠色化學之應用 29 2.5 生命週期評估法 32 2.5.1 生命週期評估之沿革簡介 33 2.5.2 生命週期評估之方法介紹 35 2.5.3 評估模式介紹 39 2.5.4 應用生命週期評估法之案例介紹 43 第三章 研究方法 46 3.1 案例說明 47 3.1.1 Case 1《以微波輔助高級氧化法降解水中全氟辛酸, MIPO》 47 3.1.2 Case 2《以超音波促進光催化氧化法降解水中全氟辛酸, SAPO》 49 3.1.3 Case 3《以薄膜外加電場去除水中全氟辛酸, EMF》 51 3.2 生命週期評估方法 54 3.2.1 目標與範疇界定 54 3.2.2 盤查分析 58 第四章 結果與討論 67 4.1 濃度標準功能單位之生命週期評估結果 67 4.1.1 Case 1 (MIPO) 67 4.1.2 Case 2 (SAPO) 73 4.1.3 Case 3 (EMF) 78 4.1.4 三案例綜合比較分析 83 4.1.5 敏感度分析 87 4.2 重量功能單位之生命週期評估結果 104 4.2.1 盤查分析 104 4.2.2 衝擊評估結果 111 4.2.3 綜合比較分析 117 4.3 綜合探討 122 4.3.1 永續發展技術 122 4.3.2 PFOA初始濃度問題 124 4.3.3 結果比較 127 4.3.4 處理PFOA技術之比較 129 第五章 結論與建議 130 5.1 結論 130 5.2 建議 132 參考文獻 133 附錄 140 | |
dc.language.iso | zh-TW | |
dc.title | 利用生命週期評估探討三種降解水中全氟辛酸之環境友善技術 | zh_TW |
dc.title | Life Cycle Assessment of the Decomposition of Perfluorooctanoic Acid in Water Using Three Environmentally Friendly Technologies | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 駱尚廉(Shang-Lien Lo),李公哲(Kung-Cheh Li) | |
dc.subject.keyword | 全氟辛酸,生命週期評估,環境友善,綠色化學, | zh_TW |
dc.subject.keyword | Perfluorooctanoic acid,Life cycle assessment,Environmentally friendly,Green chemistry, | en |
dc.relation.page | 147 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。